Regulation of platelet-activating factor-mediated protein tyrosine phosphatase 1B activation by a Janus kinase 2/calpain pathway.
Ontology highlight
ABSTRACT: Atherosclerosis is a pro-inflammatory condition underlying many cardiovascular diseases. Platelet-activating factor (PAF) and interleukin 6 (IL-6) are actively involved in the onset and progression of atherosclerotic plaques. The involvement of monocyte-derived macrophages is well characterized in the installation of inflammatory conditions in the plaque, but less is known about the contribution of monocyte-derived dendritic cells (Mo-DCs). In the same way, the involvement of calcium, phospholipase C and A2 in PAF-induced IL-6 production, in different cells types, has been shown; however, the importance of the Jak/STAT pathway and its regulation by protein-tyrosine phosphatases in this response have not been addressed. In this study, we report that PAF stimulates PTP1B activity via Jak2, thereby modulating PAF-induced IL-6 production. Using HEK 293 cells stably transfected with the PAF receptor in order to discriminate the pathway components, our results suggest that Jak2 modulates PAF-induced IL-6 production via both positive and negative pathways. Jak2 kinase activity was necessary for maximal transactivation of the IL-6 promoter, as seen by luciferase assays, whereas the same kinase also downregulated this promoter transactivation through the activation of a calcium/calpain/PTP1B pathway. The same pathways were operational in monocyte-derived dendritic cells, since PAF-induced PTP1B activation negatively regulated PAF-induced IL-6 mRNA production and, in addition, Jak2 activated calpain, one of the components involved in PAF-induced PTP1B activation. Results obtained in this study indicate that Jak2 activation is important for maximal IL-6 promoter transactivation by PAF and that PTP1B is involved in the negative regulation of this transactivation. However, PTP1B does not directly regulate Jak2 activation, but rather Jak2 regulates PAF-induced PTP1B activation.
SUBMITTER: Hamel-Cote G
PROVIDER: S-EPMC5501562 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
ACCESS DATA