Into the Dynamics of a Supramolecular Polymer at Submolecular Resolution.
Ontology highlight
ABSTRACT: To rationally design supramolecular polymers capable of self-healing or reconfiguring their structure in a dynamically controlled way, it is imperative to gain access into the intrinsic dynamics of the supramolecular polymer (dynamic exchange of monomers) while maintaining a high-resolution description of the monomer structure. But this is prohibitively difficult at experimental level. Here we show atomistic, coarse-grained modelling combined with advanced simulation approaches to characterize the molecular mechanisms and relative kinetics of monomer exchange in structural variants of a synthetic supramolecular polymer in different conditions. We can capture differences in supramolecular dynamics consistent with the experimental observations, revealing that monomer exchange in and out the fibres originates from the defects present in their supramolecular structure. At the same time, the submolecular resolution of this approach offers a molecular-level insight into the dynamics of these bioinspired materials, and a flexible tool to obtain structure-dynamics relationships for a variety of polymeric assemblies.Accessing the dynamics of soft self-assembled materials at high resolution is very difficult. Here the authors show atomistic and coarse-grained modelling combined with enhanced sampling to characterize the molecular mechanisms and kinetics of monomer exchange in synthetic supramolecular polymers.
SUBMITTER: Bochicchio D
PROVIDER: S-EPMC5529520 | biostudies-literature | 2017 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA