Ontology highlight
ABSTRACT: Background
Snake venoms are a complex mixture of proteins, organic and inorganic compounds. Some of these proteins, enzymatic or non-enzymatic ones, are able to interact with platelet receptors, causing hemostatic disorders. The possible therapeutic potential of toxins with antiplatelet properties may arouse interest in the pharmacological areas. The present study aimed to purify and characterize an antiplatelet DC protein from Bothrops alternatus snake venom.Methods
The protein, called BaltDC (DC protein from B. alternatus snake venom), was purified by a combination of ion-exchange chromatography on DEAE-Sephacel column and gel filtration on Sephadex G-75. The molecular mass was estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). The amino acid sequence of the N-terminal region was carried out by Edman degradation method. Platelet aggregation assays were performed in human platelet-rich plasma (PRP). Infrared (IR) spectroscopy was used in order to elucidate the interactions between BaltDC and platelet membrane.Results
BaltDC ran as a single protein band on SDS-PAGE and showed apparent molecular mass of 32 kDa under reducing or non-reducing conditions. The N-terminal region of the purified protein revealed the amino acid sequence IISPPVCGNELLEVGEECDCGTPENCQNECCDA, which showed identity with other snake venom metalloproteinases (SVMPs). BaltDC was devoid of proteolytic, hemorrhagic, defibrinating or coagulant activities, but it showed a specific inhibitory effect on platelet aggregation induced by ristocetin and epinephrine in PRP. IR analysis spectra strongly suggests that PO32- groups, present in BaltDC, form hydrogen bonds with the PO2- groups present in the non-lipid portion of the membrane platelets.Conclusions
BaltDC may be of medical interest since it was able to inhibit platelet aggregation.
SUBMITTER: Matias MS
PROVIDER: S-EPMC5534087 | biostudies-literature | 2017
REPOSITORIES: biostudies-literature
Matias Mariana Santos MS de Sousa Bruna Barbosa BB da Cunha Pereira Déborah Fernanda DF Dias Edigar Henrique Vaz EHV Mamede Carla Cristine Neves CCN de Queiroz Mayara Ribeiro MR Silva Anielle Christine Almeida ACA Dantas Noelio Oliveira NO Soares Andreimar Martins AM de Oliveira Costa Júnia J de Oliveira Fábio F
The journal of venomous animals and toxins including tropical diseases 20170728
<h4>Background</h4>Snake venoms are a complex mixture of proteins, organic and inorganic compounds. Some of these proteins, enzymatic or non-enzymatic ones, are able to interact with platelet receptors, causing hemostatic disorders. The possible therapeutic potential of toxins with antiplatelet properties may arouse interest in the pharmacological areas. The present study aimed to purify and characterize an antiplatelet DC protein from <i>Bothrops alternatus</i> snake venom.<h4>Methods</h4>The p ...[more]