Unknown

Dataset Information

0

Coupled feedback loops control the stimulus-dependent dynamics of the yeast transcription factor Msn2.


ABSTRACT: Information about environmental stimuli often can be encoded by the dynamics of signaling molecules or transcription factors. In the yeast Saccharomyces cerevisiae, different types of stresses induce distinct nuclear translocation dynamics of the general stress-responsive transcription factor Msn2, but the underlying mechanisms remain unclear. Using deterministic and stochastic modeling, we reproduced in silico the different dynamic responses of Msn2 to glucose limitation and osmotic stress observed in vivo and found that a positive feedback loop on protein kinase A mediated by the AMP-activated protein kinase Snf1 is coupled with a negative feedback loop to generate the characteristic pulsatile dynamics of Msn2. The model predicted that the stimulus-specific positive feedback loop could be responsible for the difference between Msn2 dynamics induced by glucose limitation and osmotic stress. This prediction was further verified experimentally by time-lapse microscopic examinations of the snf1? strain. In this mutant lacking the Snf1-mediated positive feedback loop, Msn2 responds similarly to glucose limitation and osmotic stress, and its pulsatile translocation is largely abrogated. Our combined computational and experimental analysis reveals a regulatory mechanism by which cells can encode information about environmental cues into distinct signaling dynamics through stimulus-specific network architectures.

SUBMITTER: Jiang Y 

PROVIDER: S-EPMC5535011 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Coupled feedback loops control the stimulus-dependent dynamics of the yeast transcription factor Msn2.

Jiang Yanfei Y   AkhavanAghdam Zohreh Z   Tsimring Lev S LS   Hao Nan N  

The Journal of biological chemistry 20170621 30


Information about environmental stimuli often can be encoded by the dynamics of signaling molecules or transcription factors. In the yeast <i>Saccharomyces cerevisiae</i>, different types of stresses induce distinct nuclear translocation dynamics of the general stress-responsive transcription factor Msn2, but the underlying mechanisms remain unclear. Using deterministic and stochastic modeling, we reproduced <i>in silico</i> the different dynamic responses of Msn2 to glucose limitation and osmot  ...[more]

Similar Datasets

| S-EPMC10570036 | biostudies-literature
| S-EPMC2706453 | biostudies-literature
| S-EPMC9699696 | biostudies-literature
| S-EPMC3361002 | biostudies-literature
| S-EPMC4802300 | biostudies-literature
2012-08-30 | E-GEOD-40335 | biostudies-arrayexpress
| S-EPMC5681655 | biostudies-literature
| S-EPMC3507454 | biostudies-literature
| S-EPMC1681513 | biostudies-other
| S-EPMC6893387 | biostudies-literature