Unknown

Dataset Information

0

Imatinib Triggers Phagolysosome Acidification and Antimicrobial Activity against Mycobacterium bovis Bacille Calmette-Guerin in Glucocorticoid-Treated Human Macrophages.


ABSTRACT: Glucocorticoids are extensively used to treat inflammatory diseases; however, their chronic intake increases the risk for mycobacterial infections. Meanwhile, the effects of glucocorticoids on innate host responses are incompletely understood. In this study, we investigated the direct effects of glucocorticoids on antimycobacterial host defense in primary human macrophages. We found that glucocorticoids triggered the expression of cathelicidin, an antimicrobial critical for antimycobacterial responses, independent of the intracellular vitamin D metabolism. Despite upregulating cathelicidin, glucocorticoids failed to promote macrophage antimycobacterial activity. Gene expression profiles of human macrophages treated with glucocorticoids and/or IFN-?, which promotes induction of cathelicidin, as well as antimycobacterial activity, were investigated. Using weighted gene coexpression network analysis, we identified a module of highly connected genes that was strongly inversely correlated with glucocorticoid treatment and associated with IFN-? stimulation. This module was linked to the biological functions autophagy, phagosome maturation, and lytic vacuole/lysosome, and contained the vacuolar H(+)-ATPase subunit a3, alias TCIRG1, a known antimycobacterial host defense gene, as a top hub gene. We next found that glucocorticoids, in contrast with IFN-?, failed to trigger expression and phagolysosome recruitment of TCIRG1, as well as to promote lysosome acidification. Finally, we demonstrated that the tyrosine kinase inhibitor imatinib induces lysosome acidification and antimicrobial activity in glucocorticoid-treated macrophages without reversing the anti-inflammatory effects of glucocorticoids. Taken together, we provide evidence that the induction of cathelicidin by glucocorticoids is not sufficient for macrophage antimicrobial activity, and identify the vacuolar H(+)-ATPase as a potential target for host-directed therapy in the context of glucocorticoid therapy.

SUBMITTER: Steiger J 

PROVIDER: S-EPMC5536119 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Imatinib Triggers Phagolysosome Acidification and Antimicrobial Activity against Mycobacterium bovis Bacille Calmette-Guérin in Glucocorticoid-Treated Human Macrophages.

Steiger Julia J   Stephan Alexander A   Inkeles Megan S MS   Realegeno Susan S   Bruns Heiko H   Kröll Philipp P   de Castro Kroner Juliana J   Sommer Andrea A   Batinica Marina M   Pitzler Lena L   Kalscheuer Rainer R   Hartmann Pia P   Plum Georg G   Stenger Steffen S   Pellegrini Matteo M   Brachvogel Bent B   Modlin Robert L RL   Fabri Mario M  

Journal of immunology (Baltimore, Md. : 1950) 20160527 1


Glucocorticoids are extensively used to treat inflammatory diseases; however, their chronic intake increases the risk for mycobacterial infections. Meanwhile, the effects of glucocorticoids on innate host responses are incompletely understood. In this study, we investigated the direct effects of glucocorticoids on antimycobacterial host defense in primary human macrophages. We found that glucocorticoids triggered the expression of cathelicidin, an antimicrobial critical for antimycobacterial res  ...[more]

Similar Datasets

| S-EPMC2808266 | biostudies-literature
| S-EPMC3295601 | biostudies-literature
| S-EPMC5056730 | biostudies-literature
| S-EPMC6264175 | biostudies-literature
| S-EPMC4465024 | biostudies-literature
| S-EPMC3146779 | biostudies-literature
| S-EPMC3764428 | biostudies-literature
| S-EPMC7050990 | biostudies-literature
| S-EPMC6066571 | biostudies-literature
| S-EPMC10729053 | biostudies-literature