Unknown

Dataset Information

0

Mutation-induced loss of APP function causes GABAergic depletion in recessive familial Alzheimer's disease: analysis of Osaka mutation-knockin mice.


ABSTRACT: The E693? (Osaka) mutation in APP is linked to familial Alzheimer's disease. While this mutation accelerates amyloid ? (A?) oligomerization, only patient homozygotes suffer from dementia, implying that this mutation is recessive and causes loss-of-function of amyloid precursor protein (APP). To investigate the recessive trait, we generated a new mouse model by knocking-in the Osaka mutation into endogenous mouse APP. The produced homozygous, heterozygous, and non-knockin littermates were compared for memory, neuropathology, and synaptic plasticity. Homozygotes showed memory impairment at 4 months, whereas heterozygotes did not, even at 8 months. Immunohistochemical and biochemical analyses revealed that only homozygotes displayed intraneuronal accumulation of A? oligomers at 8 months, followed by abnormal tau phosphorylation, synapse loss, glial activation, and neuron loss. These pathologies were not observed at younger ages, suggesting that a certain mechanism other than A? accumulation underlies the memory disturbance at 4 months. For the electrophysiology studies at 4 months, high-frequency stimulation evoked long-term potentiation in all mice in the presence of picrotoxin, but in the absence of picrotoxin, such potentiation was observed only in homozygotes, suggesting their GABAergic deficit. In support of this, the levels of GABA-related proteins and the number of dentate GABAergic interneurons were decreased in 4-month-old homozygotes. Since APP has been shown to play a role in dentate GABAergic synapse formation, the observed GABAergic depletion is likely associated with an impairment of the APP function presumably caused by the Osaka mutation. Oral administration of diazepam to homozygotes from 6 months improved memory at 8 months, and furthermore, prevented A? oligomer accumulation, indicating that GABAergic deficiency is a cause of memory impairment and also a driving force of A? accumulation. Our findings suggest that the Osaka mutation causes loss of APP function, leading to GABAergic depletion and memory disorder when wild-type APP is absent, providing a mechanism of the recessive heredity.

SUBMITTER: Umeda T 

PROVIDER: S-EPMC5537936 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mutation-induced loss of APP function causes GABAergic depletion in recessive familial Alzheimer's disease: analysis of Osaka mutation-knockin mice.

Umeda Tomohiro T   Kimura Tetsuya T   Yoshida Kayo K   Takao Keizo K   Fujita Yuki Y   Matsuyama Shogo S   Sakai Ayumi A   Yamashita Minato M   Yamashita Yuki Y   Ohnishi Kiyouhisa K   Suzuki Mamiko M   Takuma Hiroshi H   Miyakawa Tsuyoshi T   Takashima Akihiko A   Morita Takashi T   Mori Hiroshi H   Tomiyama Takami T  

Acta neuropathologica communications 20170731 1


The E693Δ (Osaka) mutation in APP is linked to familial Alzheimer's disease. While this mutation accelerates amyloid β (Aβ) oligomerization, only patient homozygotes suffer from dementia, implying that this mutation is recessive and causes loss-of-function of amyloid precursor protein (APP). To investigate the recessive trait, we generated a new mouse model by knocking-in the Osaka mutation into endogenous mouse APP. The produced homozygous, heterozygous, and non-knockin littermates were compare  ...[more]

Similar Datasets

| S-EPMC5803451 | biostudies-literature
| S-EPMC7031188 | biostudies-literature
| S-EPMC3396427 | biostudies-literature
| S-EPMC4618051 | biostudies-literature
| S-EPMC5415817 | biostudies-literature
| S-EPMC4049307 | biostudies-literature
| S-EPMC4529463 | biostudies-literature
| S-EPMC4358812 | biostudies-literature
2017-04-30 | GSE93657 | GEO
| S-EPMC11247678 | biostudies-literature