Unknown

Dataset Information

0

Acid-free glyoxal as a substitute of formalin for structural and molecular preservation in tissue samples.


ABSTRACT: Tissue fixation in phosphate buffered formalin (PBF) remains the standard procedure in histopathology, since it results in an optimal structural, antigenic and molecular preservation that justifies the pivotal role presently played by diagnoses on PBF-fixed tissues in precision medicine. However, toxicity of formaldehyde causes an environmental concern and may demand substitution of this reagent. Having observed that the reported drawbacks of commercially available glyoxal substitutes of PBF (Prefer, Glyo-fix, Histo-Fix, Histo-CHOICE, and Safe-Fix II) are likely related to their acidity, we have devised a neutral fixative, obtained by removing acids from the dialdehyde glyoxal with an ion-exchange resin. The resulting glyoxal acid-free (GAF) fixative has been tested in a cohort of 30 specimens including colon (N = 25) and stomach (N = 5) cancers. Our results show that GAF fixation produces a tissue and cellular preservation similar to that produced by PBF. Comparable immuno-histochemical and molecular (DNA and RNA) analytical data were obtained. We observed a significant enrichment of longer DNA fragment size in GAF-fixed compared to PBF-fixed samples. Adoption of GAF as a non-toxic histological fixative of choice would require a process of validation, but the present data suggest that it represents a reliable candidate.

SUBMITTER: Bussolati G 

PROVIDER: S-EPMC5552132 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Acid-free glyoxal as a substitute of formalin for structural and molecular preservation in tissue samples.

Bussolati Gianni G   Annaratone Laura L   Berrino Enrico E   Miglio Umberto U   Panero Mara M   Cupo Marco M   Gugliotta Patrizia P   Venesio Tiziana T   Sapino Anna A   Marchiò Caterina C  

PloS one 20170810 8


Tissue fixation in phosphate buffered formalin (PBF) remains the standard procedure in histopathology, since it results in an optimal structural, antigenic and molecular preservation that justifies the pivotal role presently played by diagnoses on PBF-fixed tissues in precision medicine. However, toxicity of formaldehyde causes an environmental concern and may demand substitution of this reagent. Having observed that the reported drawbacks of commercially available glyoxal substitutes of PBF (Pr  ...[more]

Similar Datasets

| S-EPMC2267798 | biostudies-literature
| S-EPMC5453589 | biostudies-literature
| S-EPMC7468282 | biostudies-literature
| S-EPMC2861007 | biostudies-literature
| S-EPMC2780295 | biostudies-literature
| S-EPMC5117989 | biostudies-literature
| S-EPMC3986364 | biostudies-literature
| S-EPMC4548315 | biostudies-literature
| S-EPMC7029400 | biostudies-literature