Unknown

Dataset Information

0

The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3K? inhibitor.


ABSTRACT: The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K ? and ? isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed.Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835.Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake) for AZD8835 with a decrease in 18F-FDG uptake observed at only two hours post treatment. The decrease in 18F-FDG uptake was dose dependent and data showed excellent PK/PD correlation. This data supports and parallels observations obtained with this class of compounds in patients.

SUBMITTER: Maynard J 

PROVIDER: S-EPMC5555689 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor.

Maynard Juliana J   Emmas Sally-Ann SA   Ble Francois-Xavier FX   Barjat Herve H   Lawrie Emily E   Hancox Urs U   Polanska Urszula M UM   Pritchard Alison A   Hudson Kevin K  

PloS one 20170814 8


<h4>Background</h4>The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integ  ...[more]

Similar Datasets

| S-EPMC5055809 | biostudies-literature
| S-EPMC2772305 | biostudies-literature
| S-EPMC4979890 | biostudies-literature
| 2020046 | ecrin-mdr-crc
| S-EPMC3341309 | biostudies-literature
| S-EPMC2515077 | biostudies-literature
2011-11-01 | GSE21217 | GEO
2011-11-01 | E-GEOD-21217 | biostudies-arrayexpress
| S-EPMC6261864 | biostudies-literature
| S-EPMC8113292 | biostudies-literature