Ontology highlight
ABSTRACT: Background
Delivery of PLGA (poly [D, L-lactide-co-glycolide])-based biodegradable nanoparticles (NPs) to antigen presenting cells, particularly dendritic cells, has potential for cancer immunotherapy.Materials & methods
Using a PLGA NP vaccine construct CpG-NP-Tag (CpG-ODN-coated tumor antigen [Tag] encapsulating NP) prepared using solvent evaporation technique we tested the efficacy of ex vivo and in vivo use of this construct as a feasible platform for immune-based therapy.Results
CpG-NP-Tag NPs were avidly endocytosed and localized in the endosomal compartment of bone marrow-derived dendritic cells. Bone marrow-derived dendritic cells exposed to CpG-NP-Tag NPs exhibited an increased maturation (higher CD80/86 expression) and activation status (enhanced IL-12 secretion levels). In vivo results demonstrated attenuation of tumor growth and angiogenesis as well as induction of potent cytotoxic T-lymphocyte responses.Conclusion
Collectively, results validate dendritic cells stimulatory response to CpG-NP-Tag NPs (ex vivo) and CpG-NP-Tag NPs' tumor inhibitory potential (in vivo) for therapeutic applications, respectively.
SUBMITTER: Kokate RA
PROVIDER: S-EPMC5563943 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
Kokate Rutika A RA Chaudhary Pankaj P Sun Xiangle X Thamake Sanjay I SI Maji Sayantan S Chib Rahul R Vishwanatha Jamboor K JK Jones Harlan P HP
Nanomedicine (London, England) 20160219 5
<h4>Background</h4>Delivery of PLGA (poly [D, L-lactide-co-glycolide])-based biodegradable nanoparticles (NPs) to antigen presenting cells, particularly dendritic cells, has potential for cancer immunotherapy.<h4>Materials & methods</h4>Using a PLGA NP vaccine construct CpG-NP-Tag (CpG-ODN-coated tumor antigen [Tag] encapsulating NP) prepared using solvent evaporation technique we tested the efficacy of ex vivo and in vivo use of this construct as a feasible platform for immune-based therapy.<h4 ...[more]