Unknown

Dataset Information

0

Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.


ABSTRACT: Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator, forms a homo-trimer and binds to multiple copies of PSD-95. Binding of SynGAP to PSD-95 induces phase separation of the complex, forming highly concentrated liquid-like droplets reminiscent of the PSD. The multivalent nature of the SynGAP/PSD-95 complex is critical for the phase separation to occur and for proper activity-dependent SynGAP dispersions from the PSD. In addition to revealing a dynamic anchoring mechanism of SynGAP at the PSD, our results also suggest a model for phase-transition-mediated formation of PSD.

SUBMITTER: Zeng M 

PROVIDER: S-EPMC5564291 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity.

Zeng Menglong M   Shang Yuan Y   Araki Yoichi Y   Guo Tingfeng T   Huganir Richard L RL   Zhang Mingjie M  

Cell 20160801 5


Postsynaptic densities (PSDs) are membrane semi-enclosed, submicron protein-enriched cellular compartments beneath postsynaptic membranes, which constantly exchange their components with bulk aqueous cytoplasm in synaptic spines. Formation and activity-dependent modulation of PSDs is considered as one of the most basic molecular events governing synaptic plasticity in the nervous system. In this study, we discover that SynGAP, one of the most abundant PSD proteins and a Ras/Rap GTPase activator,  ...[more]

Similar Datasets

| S-EPMC6365469 | biostudies-literature
| S-EPMC2039911 | biostudies-literature
| S-EPMC7289271 | biostudies-literature
| S-EPMC5566242 | biostudies-literature
| S-EPMC6548289 | biostudies-literature
| S-EPMC7852677 | biostudies-literature
| S-EPMC4876383 | biostudies-literature
| S-EPMC2782867 | biostudies-literature
| S-EPMC6704671 | biostudies-literature
| S-EPMC5627952 | biostudies-literature