Unknown

Dataset Information

0

Exposure to Violence Accelerates Epigenetic Aging in Children.


ABSTRACT: Epigenetic processes, including DNA methylation, change reliably with age across the lifespan, such that DNA methylation can be used as an "epigenetic clock". This epigenetic clock can be used to predict age and age acceleration, which occurs when methylation-based prediction of age exceeds chronological age and has been associated with increased mortality. In the current study we examined epigenetic age acceleration using saliva samples collected from children between ages 6-13 (N?=?101). Children's exposure to neighborhood violence and heart rate during a stressful task were assessed. Age acceleration was associated with children's direct experience of violence (p?=?0.004) and with decreased heart rate (p?=?0.002). Children who were predicted to be older than their chronological age had twice as much violence exposure as other children and their heart rate was similar to that of adults. The results remained significant after controlling for demographic variables, such as sex, income and education. This is the first study to show the effects of direct violence exposure on epigenetic aging in children using salivary DNA. Although longitudinal studies are needed to determine whether accelerated epigenetic aging leads to adverse health outcomes later in life, these data point to DNA methylation during childhood as a putative biological mechanism.

SUBMITTER: Jovanovic T 

PROVIDER: S-EPMC5566406 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exposure to Violence Accelerates Epigenetic Aging in Children.

Jovanovic Tanja T   Vance L Alexander LA   Cross Dorthie D   Knight Anna K AK   Kilaru Varun V   Michopoulos Vasiliki V   Klengel Torsten T   Smith Alicia K AK  

Scientific reports 20170821 1


Epigenetic processes, including DNA methylation, change reliably with age across the lifespan, such that DNA methylation can be used as an "epigenetic clock". This epigenetic clock can be used to predict age and age acceleration, which occurs when methylation-based prediction of age exceeds chronological age and has been associated with increased mortality. In the current study we examined epigenetic age acceleration using saliva samples collected from children between ages 6-13 (N = 101). Child  ...[more]

Similar Datasets

| S-EPMC4217403 | biostudies-literature
| S-EPMC7832214 | biostudies-literature
2014-11-03 | E-GEOD-61256 | biostudies-arrayexpress
| S-EPMC6026068 | biostudies-literature
| S-EPMC6735752 | biostudies-literature
2014-11-03 | GSE61256 | GEO
| S-EPMC4993344 | biostudies-literature
| S-EPMC3146307 | biostudies-literature
| S-EPMC4699359 | biostudies-literature
| S-EPMC8544305 | biostudies-literature