Project description:Type 1 diabetes mellitus (T1D) is a chronic, multifactorial autoimmune disease that involves the progressive destruction of pancreatic ?-cells, ultimately resulting in the loss of insulin production and secretion. The goal of clinical intervention is to prevent or arrest the onset and progression of autoimmunity, reverse ?-cell destruction, and restore glycometabolic and immune homeostasis. Despite promising outcomes observed with islet transplantation and advancements in immunomodulatory therapies, the need for an effective cell replacement strategy for curing T1D still persists. Stem cell therapy offers a solution to the cited challenges of islet transplantation. While the regenerative potential of stem cells can be harnessed to make available a self-replenishing supply of glucose-responsive insulin-producing cells, their immunomodulatory properties may potentially be used to prevent, arrest, or reverse autoimmunity, ameliorate innate/alloimmune graft rejection, and prevent recurrence of the disease. Herein, we discuss the therapeutic potential of stem cells derived from a variety of sources for the cure of T1D, for example, embryonic stem cells, induced pluripotent stem cells, bone marrow-derived hematopoietic stem cells, and multipotent mesenchymal stromal cells derived from bone marrow, umbilical cord blood, and adipose tissue. The benefits of combinatorial approaches designed to ensure the successful clinical translation of stem cell therapeutic strategies, such as approaches combining effective stem cell strategies with islet transplantation, immunomodulatory drug regimens, and/or novel bioengineering techniques, are also discussed. To conclude, the application of stem cell therapy in the cure for T1D appears extremely promising.
Project description:Stem cell-based therapies are emerging as a promising strategy to tackle cancer. Multiple stem cell types have been shown to exhibit inherent tropism towards tumours. Moreover, when engineered to express therapeutic agents, these pathotropic delivery vehicles can effectively target sites of malignancy. This perspective considers the current status of stem cell-based treatments for cancer and provides a rationale for translating the most promising preclinical studies into the clinic.
Project description:Patients with non-Hodgkin lymphomas (NHLs) resistant to standard therapies have a dismal prognosis. The outcome is even poorer in patients relapsing after autologous stem cell transplantation. Most of these patients do not qualify for an allogeneic hematopoietic cell transplantation (HCT) due to refractory disease, lack of a suitable allogeneic donor, higher age, or cumulative toxicity of previous chemotherapy. Despite patients undergoing allogeneic HCT normally profit from a graft-versus-lymphoma effect, overall survival in patients with NHL after HCT remains short. Therefore, novel treatment modalities are urgently needed. Chimeric antigen receptor (CAR)-T cells, a new class of cellular immunotherapy involving ex vivo genetic modification of T cells to incorporate an engineered CAR have been used in clinical trials. In the majority of studies, B cell malignancies treated with CD19 targeting CAR-T cells have been analyzed. Recently, results from 2 CD19 directed CAR-T cell trials with an increased follow-up of patients led to Food and Drug Administration and European Medicines Agency approval of tisagenlecleucel and axicabtagene ciloleucel. Common adverse events (AEs) include cytokine release syndrome and neurological toxicity, which may require admission to an intensive care unit, B cell aplasia and hemophagocytic lymphohistiocytosis. These AEs are manageable when treated by an appropriately trained team following established algorithm. In this review, we summarize the results of 3 large phase II CD19 CAR-T cell trials and focus on AEs. We also provide a perspective of ongoing activity in this field with the intend to improve the potency of this emerging novel therapy.
Project description:Despite significant therapeutic advances, heart failure remains the predominant cause of mortality worldwide. Currently, progenitor/stem cell biology holds great promise for a new era of cell-based therapy for salvaging the failing heart. However, the translational arm of progenitor/stem cell science is in a relatively primitive state. For the time being, the clinical trials have been both encouraging and disappointing. How to improve the engraftment, long-term survival and appropriate differentiation of transplanted progenitor/stem cell within the cardiovascular tissues may be the key issues to facilitate the transition of cardiogenic stem cell research from bench to bedside. In this review article we discuss the state-of-the-art in adult stem cell therapies for cardiovascular diseases and approaches to release cardiac regeneration potentials of progenitor/stem cells.
Project description:Although most patients with Hodgkin lymphoma (HL) are cured with primary therapy, patients with primary refractory disease or relapse after initial treatment have poor outcomes and represent an unmet medical need. Recent advances in unraveling the biology of HL have yielded a plethora of novel targeted therapies. This review provides an overview of the data behind the hype generated by these advances and addresses the question of whether or not clinically these targeted therapies offer hope for patients with HL.
Project description:Many gene editing techniques are developed and tested, yet, most of these are optimized for transformed cell lines, which differ from their primary cell counterparts in terms of transfectability, cell death propensity, differentiation capability, and chromatin accessibility to gene editing tools. Researchers are working to overcome the challenges associated with gene editing of primary cells, namely, at the level of improving the gene editing tool components, e.g., the use of modified single guide RNAs, more efficient delivery of Cas9 and RNA in the ribonucleoprotein of these cells. Despite these efforts, the low efficiency of proper gene editing in true primary cells is an obstacle that needs to be overcome in order to generate sufficiently high numbers of corrected cells for therapeutic use. In addition, many of the therapeutic candidate genes for gene editing are expressed in more mature blood cell lineages but not in the hematopoietic stem cells (HSCs), where they are tightly packed in heterochromatin, making them less accessible to gene editing enzymes. Bringing HSCs in proliferation is sometimes seen as a solution to overcome lack of chromatin access, but the induction of proliferation in HSCs often is associated with loss of stemness. The documented occurrences of off-target effects and, importantly, on-target side effects also raise important safety issues. In conclusion, many obstacles still remain to be overcome before gene editing in HSCs for gene correction purposes can be applied clinically. In this review, in a perspective way, we will discuss the challenges of researching and developing a novel genetic engineering therapy for monogenic blood and immune system disorders.
Project description:The identification of numerous breast cancer antigens has generated increasing enthusiasm for the application of immune-based therapies in breast malignancies. Although the use of monoclonal antibodies has revolutionized the "targeted therapy" of breast cancer, and the immunomodulatory effects of bisphosphonates continue to be evaluated, few studies to date have demonstrated widespread utility for other forms of immunotherapy. The present review assesses modern research and explores whether the hopes for immunotherapy can overcome the hype.
Project description:Immunotherapy represents the newest pillar in cancer care. Although there are increasing data showing the efficacy of immunotherapy there is a spectrum of response across unselected populations of cancer patients. In fact, response rates can be poor even among patients with immunogenic tumors for reasons that remain poorly understood. A promising clinical strategy to improve outcomes, which is supported by an abundance of preclinical data, is combining immunotherapy with radiation therapy. Here we review the existing evidence and future directions for combining immunotherapy and radiation therapy for patients with gastrointestinal cancers.
Project description:Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Project description:Probiotic bacteria have been associated with various health benefits and included in overwhelming number of foods. Today, probiotic supplements are consumed with increasing regularity and record a rapidly growing economic value. With billions of heterogeneous populations of probiotics per serving, probiotic supplements contain the largest quantity of probiotics across all functional foods. They often carry antibiotic-resistant determinants that can be transferred to and accumulate in resident bacteria of the gastrointestinal tract and risk their acquisitions by opportunistic pathogens. While the health benefits of probiotics have been widely publicized, this health risk, however, is underrepresented in both scientific studies and public awareness. On the other hand, the human gut presents conditions that are unfavorable for bacteria, including probiotics. It remains uncertain if probiotics from supplements can tolerate acids and bile salts that may undermine their effectiveness in conferring health benefits. Here, we put into perspective the perceived health benefits and the long-term safety of consuming probiotic supplements, specifically bringing intolerance to acids and bile salts, and the long-standing issue of antibiotic-resistant gene transfer into sharp focus. We report that probiotics from supplements examined in this study have poor tolerance to acids and bile salts while also displaying resistance to multiple antibiotics. They could also adapt and gain resistance to streptomycin in vitro. In an environment where consuming supplements is considered a norm, our results and that of others will put in perspective the persisting concerns surrounding probiotic supplements so that the current hype does not overpower the hope.