A novel quantitative PCR mediated by high-fidelity DNA polymerase.
Ontology highlight
ABSTRACT: The biggest challenge for accurate diagnosis of viral infectious disease is the high genetic variability of involved viruses, which affects amplification efficiency and results in low sensitivity and narrow spectrum. Here, we developed a new simple qPCR mediated by high-fidelity (HF) DNA polymerase. The new method utilizes an HFman probe and one primer. Fluorescent signal was generated from the 3'-5' hydrolysis of HFman probe by HF DNA polymerase before elongation initiation. Mismatches between probe/primer and template have less influence on the amplification efficiency of the new method. The new qPCR exhibited higher sensitivity and better adaptability to sequence variable templates than the conventional TaqMan probe based-qPCR in quantification of HIV-1 viral load. Further comparison with COBAS TaqMan HIV-1 Test (v2.0) showed a good correlation coefficient (R2?=?0.79) between both methods in quantification of HIV-1 viral load among 21 clinical samples. The characteristics of tolerance to variable templates and one probe-one primer system imply that the probe/primer design for the new method will be easier and more flexible than the conventional method for highly heterogeneous viruses. Therefore, the HF DNA polymerase-mediated qPCR method is a simple, sensitive and promising approach for the development of diagnostics for viral infectious diseases.
SUBMITTER: Zhang M
PROVIDER: S-EPMC5583327 | biostudies-literature | 2017 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA