Unknown

Dataset Information

0

Structural differences between yeast and mammalian microtubules revealed by cryo-EM.


ABSTRACT: Microtubules are polymers of ??-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end-tracking protein Bim1 binds yeast microtubules both between ??-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. Our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.

SUBMITTER: Howes SC 

PROVIDER: S-EPMC5584162 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural differences between yeast and mammalian microtubules revealed by cryo-EM.

Howes Stuart C SC   Geyer Elisabeth A EA   LaFrance Benjamin B   Zhang Rui R   Kellogg Elizabeth H EH   Westermann Stefan S   Rice Luke M LM   Nogales Eva E  

The Journal of cell biology 20170626 9


Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microt  ...[more]

Similar Datasets

| S-EPMC10577476 | biostudies-literature
| S-EPMC6105560 | biostudies-literature
| S-EPMC8853558 | biostudies-literature
| S-EPMC9597862 | biostudies-literature
| S-EPMC6699824 | biostudies-literature
| S-EPMC9296673 | biostudies-literature
| S-EPMC7449697 | biostudies-literature
| S-EPMC5951624 | biostudies-literature
| S-EPMC5655142 | biostudies-literature
| S-EPMC3433857 | biostudies-literature