Changes in Corneal Innervation after HSV-1 Latency Established with Different Reactivation Phenotypes.
Ontology highlight
ABSTRACT: We used a rabbit model infected with high phenotypic reactivators (HPRs) as well as recombinant HSV-1 (herpes simplex virus 1) with deletions to study their effect on corneal innervations after latency was established.Corneas from noninfected New Zealand white rabbits were used to obtain the entire map of corneal innervation. Others were inoculated with the HSV-1 strains McKrae, 17Syn+, or recombinant mutants with glycoprotein K (gK) deletion, or with infected early protein 0 (ICP0) deletion. The animals were euthanized at 124 to 125 days postinfection and the corneas were immunostained with a mouse monoclonal anti-?III tubulin antibody. Images were acquired with a fluorescence microscope and corneal sub-basal nerve density was calculated on the basis of the whole mount images. Differences between the HSV-infected eyes, and comparison with normal control, were analyzed.In the noninfected rabbit, the stroma was densely innervated in the central area and as a consequence the sub-basal epithelial nerve bundles were shorter, and no vortex was found. The HSV-infected corneas showed nerve damage in both epithelial and stromal nerves. Corneas infected with ICP0 and gK deletion mutants showed mild to moderate damage, while those infected with 17Syn+ and McKrae strains were seriously damaged. In the eyes infected with ICP0 and gK deletion, there were reduced numbers of sub-basal nerve bundles, but most of the corneas retained a normal stromal network. Corneas infected with 17 Syn+ and McKrae displayed destroyed nerve structures and formation of a scar tissue in the central cornea, in which only a few nerve fibers could be detected.HSV-1 primary corneal infection seriously damages the corneal nerves, persisting for more than 4 months. Reduction of axonal transport (by gK deletion) or virus replication (by ICP0 deletion) significantly attenuated the nerve damage induced by the virus.
SUBMITTER: He J
PROVIDER: S-EPMC5603150 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA