Unknown

Dataset Information

0

Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS.


ABSTRACT: Axonal regeneration in the adult mammalian central nervous system is limited in part by the non-permissive environment, including axonal growth inhibitors such as the Nogo-A protein. How the functions of these inhibitors can be blocked remains unclear. Here, we examined the role of LOTUS, an endogenous Nogo receptor antagonist, in promoting functional recovery and neural repair after spinal cord injury (SCI), as well as axonal regeneration after optic nerve crush. Wild-type untreated mice show incomplete but substantial intrinsic motor recovery after SCI. The genetic deletion of LOTUS delays and decreases the extent of motor recovery, suggesting that LOTUS is required for spontaneous neural repair. The neuronal overexpression of LOTUS in transgenic mice promotes motor recovery after SCI, and recombinant viral overexpression of LOTUS enhances retinal ganglion cell axonal regeneration after optic nerve crush. Thus, the level of LOTUS function titrates axonal regeneration.

SUBMITTER: Hirokawa T 

PROVIDER: S-EPMC5608707 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS.

Hirokawa Tomoko T   Zou Yixiao Y   Kurihara Yuji Y   Jiang Zhaoxin Z   Sakakibara Yusuke Y   Ito Hiromu H   Funakoshi Kengo K   Kawahara Nobutaka N   Goshima Yoshio Y   Strittmatter Stephen M SM   Takei Kohtaro K  

Scientific reports 20170921 1


Axonal regeneration in the adult mammalian central nervous system is limited in part by the non-permissive environment, including axonal growth inhibitors such as the Nogo-A protein. How the functions of these inhibitors can be blocked remains unclear. Here, we examined the role of LOTUS, an endogenous Nogo receptor antagonist, in promoting functional recovery and neural repair after spinal cord injury (SCI), as well as axonal regeneration after optic nerve crush. Wild-type untreated mice show i  ...[more]

Similar Datasets

| S-EPMC7930056 | biostudies-literature
| S-EPMC3244695 | biostudies-literature
| S-EPMC10721829 | biostudies-literature
| S-EPMC2807333 | biostudies-literature
| S-EPMC11352776 | biostudies-literature
| S-EPMC6675256 | biostudies-literature
| S-EPMC2848954 | biostudies-literature
| S-EPMC6705898 | biostudies-literature
| S-EPMC4291493 | biostudies-literature