Unknown

Dataset Information

0

Supramolecular Porphyrin Cages Assembled at Molecular-Materials Interfaces for Electrocatalytic CO Reduction.


ABSTRACT: Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm2) at a potential of -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.

SUBMITTER: Gong M 

PROVIDER: S-EPMC5620982 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4773422 | biostudies-literature
| S-EPMC7021905 | biostudies-literature
| S-EPMC6511002 | biostudies-literature
| S-EPMC7519292 | biostudies-literature