Unknown

Dataset Information

0

Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits.


ABSTRACT: Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.

SUBMITTER: Baek M 

PROVIDER: S-EPMC5665584 | biostudies-literature | 2017 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits.

Baek Myungin M   Pivetta Chiara C   Liu Jeh-Ping JP   Arber Silvia S   Dasen Jeremy S JS  

Cell reports 20171001 4


Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventr  ...[more]

Similar Datasets

| S-EPMC2891428 | biostudies-literature
| S-EPMC9084915 | biostudies-literature
| S-EPMC6842112 | biostudies-literature
| S-EPMC2562723 | biostudies-literature
| S-EPMC4839491 | biostudies-literature
| S-EPMC7062467 | biostudies-literature
| S-EPMC4450813 | biostudies-literature
| S-EPMC8873025 | biostudies-literature
| S-EPMC5937258 | biostudies-literature
| S-EPMC8492062 | biostudies-literature