Project description:Diabetic nephropathy is a significant cause of chronic kidney disease and end-stage renal failure globally. Much research has been conducted in both basic science and clinical therapeutics, which has enhanced understanding of the pathophysiology of diabetic nephropathy and expanded the potential therapies available. This review will examine the current concepts of diabetic nephropathy management in the context of some of the basic science and pathophysiology aspects relevant to the approaches taken in novel, investigative treatment strategies.
Project description:Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy Keywords = Diabetes Keywords = kidney Keywords = glomeruli Keywords: other
Project description:Validation of predicted gene expression of human mesangial cells after 24h Tacrolimus stimulus Objective: To evaluate tacrolimus as therapeutic option for diabetic nephropathy (DN) based on molecular profile and network-based molecular model comparisons. Materials and Methods: We generated molecular models representing pathophysiological mechanisms of DN and tacrolimus mechanism of action (MoA) based on literature derived data and transcriptomics datasets. Shared enriched molecular pathways were identified based on both model datasets. A newly generated transcriptomics dataset studying the effect of tacrolimus on mesangial cells in vitro was added to identify mechanisms in DN pathophysiology. We searched for features in interference between the DN molecular model and the tacrolimus MoA molecular model already holding annotation evidence as diagnostic or prognostic biomarker in the context of DN. Results: Thirty nine molecular features were shared between the DN molecular model, holding 252 molecular features and the tacrolimus MoA molecular model, holding 209 molecular features, with six additional molecular features affected by tacrolimus in mesangial cells. Significantly affected molecular pathways by both molecular model sets included cytokine-cytokine receptor interactions, adherens junctions, TGF-beta signaling, MAPK signaling, and calcium signaling. Molecular features involved in inflammation and immune response contributing to DN progression were significantly downregulated by tacrolimus (e.g. the tumor necrosis factor alpha (TNF), interleukin 4, or interleukin 10). On the other hand, pro-fibrotic stimuli being detrimental to renal function were induced by tacrolimus like the transforming growth factor beta 1 (TGFB1), endothelin 1 (EDN1), or type IV collagen alpha 1 (COL4A1). Conclusion: Patients with DN and elevated TNF levels might benefit from tacrolimus treatment regarding maintaining GFR and reducing inflammation. TGFB1 and EDN1 are proposed as monitoring markers to assess degree of renal damage. Next to this stratification approach, the use of drug combinations consisting of tacrolimus in addition to ACE inhibitors, angiotensin receptor blockers, TGFB1- or EDN1-receptor antagonists might warrant further studies. comparison of gene expression of human mesangial cells after 24h Tacrolimus vs. Ctrl; 4 independent experiments were conducted (4xTacrolimus 24h and 4x ctrl. 24h with Drug solvent (DMSO))
Project description:Validation of predicted gene expression of human mesangial cells after 24h Tacrolimus stimulus Objective: To evaluate tacrolimus as therapeutic option for diabetic nephropathy (DN) based on molecular profile and network-based molecular model comparisons. Materials and Methods: We generated molecular models representing pathophysiological mechanisms of DN and tacrolimus mechanism of action (MoA) based on literature derived data and transcriptomics datasets. Shared enriched molecular pathways were identified based on both model datasets. A newly generated transcriptomics dataset studying the effect of tacrolimus on mesangial cells in vitro was added to identify mechanisms in DN pathophysiology. We searched for features in interference between the DN molecular model and the tacrolimus MoA molecular model already holding annotation evidence as diagnostic or prognostic biomarker in the context of DN. Results: Thirty nine molecular features were shared between the DN molecular model, holding 252 molecular features and the tacrolimus MoA molecular model, holding 209 molecular features, with six additional molecular features affected by tacrolimus in mesangial cells. Significantly affected molecular pathways by both molecular model sets included cytokine-cytokine receptor interactions, adherens junctions, TGF-beta signaling, MAPK signaling, and calcium signaling. Molecular features involved in inflammation and immune response contributing to DN progression were significantly downregulated by tacrolimus (e.g. the tumor necrosis factor alpha (TNF), interleukin 4, or interleukin 10). On the other hand, pro-fibrotic stimuli being detrimental to renal function were induced by tacrolimus like the transforming growth factor beta 1 (TGFB1), endothelin 1 (EDN1), or type IV collagen alpha 1 (COL4A1). Conclusion: Patients with DN and elevated TNF levels might benefit from tacrolimus treatment regarding maintaining GFR and reducing inflammation. TGFB1 and EDN1 are proposed as monitoring markers to assess degree of renal damage. Next to this stratification approach, the use of drug combinations consisting of tacrolimus in addition to ACE inhibitors, angiotensin receptor blockers, TGFB1- or EDN1-receptor antagonists might warrant further studies.
Project description:Diabetic kidney disease (DKD) increases the risk for mortality and is the leading cause of end-stage renal disease. Treatment with sodium-glucose cotransporter 2 inhibitors (SGLT2i) attenuates the progression of DKD, especially in patients with advanced kidney disease. Herein, we show that in diabetes, mTORC1 activity is increased in renal proximal tubule cells (RPTCs) along with enhanced tubule-interstitial fibrosis; this is prevented by SGLT2i. Constitutive activation of mTORC1 in RPTCs induces renal fibrosis and failure and abolishes the renal-protective effects of SGLT2i in diabetes. On the contrary, partial inhibition of mTORC1 in RPTCs prevents fibrosis and the decline in renal function. Stimulation of mTORC1 in RPTCs turns on a pro-fibrotic program in the renal cortex, whereas its inhibition in diabetes reverses the alterations in gene expression. We suggest that RPTC mTORC1 is a critical node that mediates kidney dysfunction in diabetes and the protective effects of SGLT2i by regulating fibrogenesis.
Project description:Diabetes mellitus contributes greatly to morbidity, mortality, and overall health care costs. In major part, these outcomes derive from the high incidence of progressive kidney dysfunction in patients with diabetes making diabetic nephropathy a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved and of the early dysfunctions observed in the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. Here we review the pathophysiological changes that occur in the kidney in response to hyperglycemia, including the cellular responses to high glucose and the responses in vascular, glomerular, podocyte, and tubular function. The molecular basis, characteristics, and consequences of the unique growth phenotypes observed in the diabetic kidney, including glomerular structures and tubular segments, are outlined. We delineate mechanisms of early diabetic glomerular hyperfiltration including primary vascular events as well as the primary role of tubular growth, hyperreabsorption, and tubuloglomerular communication as part of a "tubulocentric" concept of early diabetic kidney function. The latter also explains the "salt paradox" of the early diabetic kidney, that is, a unique and inverse relationship between glomerular filtration rate and dietary salt intake. The mechanisms and consequences of the intrarenal activation of the renin-angiotensin system and of diabetes-induced tubular glycogen accumulation are discussed. Moreover, we aim to link the changes that occur early in the diabetic kidney including the growth phenotype, oxidative stress, hypoxia, and formation of advanced glycation end products to mechanisms involved in progressive kidney disease.
Project description:Diabetic retinopathy (DR) is the most common complication of diabetes mellitus (DM). It has long been recognized as a microvascular disease. The diagnosis of DR relies on the detection of microvascular lesions. The treatment of DR remains challenging. The advent of anti-vascular endothelial growth factor (VEGF) therapy demonstrated remarkable clinical benefits in DR patients; however, the majority of patients failed to achieve clinically-significant visual improvement. Therefore, there is an urgent need for the development of new treatments. Laboratory and clinical evidence showed that in addition to microvascular changes, inflammation and retinal neurodegeneration may contribute to diabetic retinal damage in the early stages of DR. Further investigation of the underlying molecular mechanisms may provide targets for the development of new early interventions. Here, we present a review of the current understanding and new insights into pathophysiology in DR, as well as clinical treatments for DR patients. Recent laboratory findings and related clinical trials are also reviewed.
Project description:Diabetic nephropathy (DN) is a severe complication of diabetes and serves as the leading cause of chronic renal failure. In the past decades, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs) based first-line therapy can slow but cannot stop the progression of DN, which urgently requests the innovation of therapeutic strategies. Thiazolidinediones (TZDs), the synthetic exogenous ligands of nuclear receptor peroxisome proliferator-activated receptor- ? (PPAR ? ), had been thought to be a promising candidate for strengthening the therapy of DN. However, the severe adverse effects including fluid retention, cardiovascular complications, and bone loss greatly limited their use in clinic. Recently, numerous novel PPAR ? agonists involving the endogenous PPAR ? ligands and selective PPAR ? modulators (SPPARMs) are emerging as the promising candidates of the next generation of antidiabetic drugs instead of TZDs. Due to the higher selectivity of these novel PPAR ? agonists on the regulation of the antidiabetes-associated genes than that of the side effect-associated genes, they present fewer adverse effects than TZDs. The present review was undertaken to address the advancements and the therapeutic potential of these newly developed PPAR ? agonists in dealing with diabetic kidney disease. At the same time, the new insights into the therapeutic strategies of DN based on the PPAR ? agonists were fully addressed.
Project description:The expanding impact of chronic kidney disease (CKD) due to pandemic diabetes mellitus is recounted emphasizing its epidemiology that has induced global socioeconomic stress on health care systems in industrialized nations now attempting to proffer optimal therapy for end stage renal disease (ESRD). Strategies to delay and perhaps prevent progression of diabetic nephropathy from minimal proteinuria through nephrotic range proteinuria and azotemia to ESRD appear to have decreased the rate of persons with diabetes who develop ESRD. For those with ESRD attributed to diabetes, kidney transplantation affords better survival and rehabilitation than either hemodialysis or peritoneal dialysis. It is likely that advances in genetics and molecular biology will suggest early interventions that will preempt diabetic complications including renal failure.