Unknown

Dataset Information

0

The structure-energy landscape of NMDA receptor gating.


ABSTRACT: N-Methyl-D-aspartate (NMDA) receptors are the main calcium-permeable excitatory receptors in the mammalian central nervous system. The NMDA receptor gating is complex, exhibiting multiple closed, open, and desensitized states; however, central questions regarding the conformations and energetics of the transmembrane domains as they relate to the gating states are still unanswered. Here, using single-molecule Förster resonance energy transfer (smFRET), we map the energy landscape of the first transmembrane segment of the Rattus norvegicus NMDA receptor under resting and various liganded conditions. These results show kinetically and structurally distinct changes associated with apo, agonist-bound, and inhibited receptors linked by a linear mechanism of gating at this site. Furthermore, the smFRET data suggest that allosteric inhibition by zinc occurs by an uncoupling of the agonist-induced changes at the extracellular domains from the gating motions leading to an apo-like state, while dizocilpine, a pore blocker, stabilizes multiple closely packed transmembrane states.

SUBMITTER: Dolino DM 

PROVIDER: S-EPMC5698143 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications


N-Methyl-D-aspartate (NMDA) receptors are the main calcium-permeable excitatory receptors in the mammalian central nervous system. The NMDA receptor gating is complex, exhibiting multiple closed, open, and desensitized states; however, central questions regarding the conformations and energetics of the transmembrane domains as they relate to the gating states are still unanswered. Here, using single-molecule Förster resonance energy transfer (smFRET), we map the energy landscape of the first tra  ...[more]

Similar Datasets

| S-EPMC3077707 | biostudies-literature
| S-EPMC2712209 | biostudies-literature
| S-EPMC3836766 | biostudies-literature
| S-EPMC7141592 | biostudies-literature
| S-EPMC11376105 | biostudies-literature
| S-EPMC2587015 | biostudies-literature
| S-EPMC3642040 | biostudies-literature
| S-EPMC3629906 | biostudies-literature
| S-EPMC3690137 | biostudies-literature
| S-EPMC3207320 | biostudies-literature