Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination.
Ontology highlight
ABSTRACT: Antigen discrimination by T cells occurs at the junction between a T cell and an antigen-presenting cell. Juxtacrine binding between numerous adhesion, signaling, and costimulatory molecules defines both the topographical and lateral geometry of this cell-cell interface, within which T cell receptor (TCR) and peptide major histocompatibility complex (pMHC) interact. These physical constraints on receptor and ligand movement have significant potential to modulate their molecular binding properties. Here, we monitor individual ligand:receptor binding and unbinding events in space and time by single-molecule imaging in live primary T cells for a range of different pMHC ligands and surface densities. Direct observations of pMHC:TCR and CD80:CD28 binding events reveal that the in situ affinity of both pMHC and CD80 ligands for their respective receptors is modulated by the steady-state number of agonist pMHC:TCR interactions experienced by the cell. By resolving every single pMHC:TCR interaction it is evident that this cooperativity is accomplished by increasing the kinetic on-rate without altering the off-rate and has a component that is not spatially localized. Furthermore, positive cooperativity is observed under conditions where the T cell activation probability is low. This TCR-mediated feedback is a global effect on the intercellular junction. It is triggered by the first few individual pMHC:TCR binding events and effectively increases the efficiency of TCR scanning for antigen before the T cell is committed to activation.
SUBMITTER: Pielak RM
PROVIDER: S-EPMC5699024 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA