Computational derivation of a molecular framework for hair follicle biology from disease genes.
Ontology highlight
ABSTRACT: Knowledge about genetic drivers of disease increases the efficiency of interpreting patient DNA sequence and helps to identify and prioritize biological points of intervention. Discoveries of genes with single mutations exerting substantial phenotypic impact reliably provide new biological insight, although such approaches tend to generate knowledge that is disjointed from the complexity of biological systems governed by elaborate networks. Here we sought to facilitate diagnostic sequencing for hair disorders and assess the underlying biology by compiling an archive of 684 genes discovered in studies of monogenic disorders and identifying molecular annotations enriched by them. To demonstrate utility for this dataset, we performed two data driven analyses. First, we extracted and analyzed data implicating enriched signaling pathways and identified previously unrecognized contributions from Hippo signaling. Second, we performed hierarchical clustering on the entire dataset to investigate the underlying causal structure of hair disorders. We identified 35 gene clusters representing genetically derived biological modules that provide a foundation for the development of a new disease taxonomy grounded in biology, rather than clinical presentations alone. This Resource will be useful for diagnostic sequencing in patients with diseases affecting the hair follicle, improved characterization of hair follicle biology, and methods development in precision medicine.
SUBMITTER: Severin RK
PROVIDER: S-EPMC5701154 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA