Unknown

Dataset Information

0

Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound ?1-adrenergic receptor.


ABSTRACT: A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., Gs and ?-arrestin. Using 13C methyl methionine NMR for the ?1-adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with Gs-mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through ligand-free nanobody-receptor interaction reveals structural differences on the cytoplasmic receptor side compared to the full agonist-bound nanobody-coupled form, suggesting that ligand-induced variations in G-protein interaction underpin partial agonism. Significant differences in receptor dynamics are observed ranging from rigid nanobody-coupled states to extensive ?s-to-ms timescale dynamics when bound to a full agonist. We suggest that the mobility of the full agonist-bound form primes the GPCR to couple to IBPs. On formation of the ternary complex, ligand efficacy determines the quality of the interaction between the rigidified receptor and an IBP and consequently the signalling level.

SUBMITTER: Solt AS 

PROVIDER: S-EPMC5702606 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Insight into partial agonism by observing multiple equilibria for ligand-bound and G<sub>s</sub>-mimetic nanobody-bound β<sub>1</sub>-adrenergic receptor.

Solt Andras S AS   Bostock Mark J MJ   Shrestha Binesh B   Kumar Prashant P   Warne Tony T   Tate Christopher G CG   Nietlispach Daniel D  

Nature communications 20171127 1


A complex conformational energy landscape determines G-protein-coupled receptor (GPCR) signalling via intracellular binding partners (IBPs), e.g., G<sub>s</sub> and β-arrestin. Using <sup>13</sup>C methyl methionine NMR for the β<sub>1</sub>-adrenergic receptor, we identify ligand efficacy-dependent equilibria between an inactive and pre-active state and, in complex with G<sub>s</sub>-mimetic nanobody, between more and less active ternary complexes. Formation of a basal activity complex through  ...[more]

Similar Datasets

| EMPIAR-11856 | biostudies-other
| S-EPMC2739723 | biostudies-literature
| S-EPMC6606567 | biostudies-literature
| S-EPMC3184188 | biostudies-literature
| S-EPMC5321683 | biostudies-literature
| S-EPMC6342705 | biostudies-literature
| S-EPMC5161622 | biostudies-literature
| S-EPMC6608499 | biostudies-literature