Unknown

Dataset Information

0

Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves.


ABSTRACT: During chloride salinity, the pH of the leaf apoplast (pHapo) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pHapo changes. Using proteomic analyses of expanding leaves of corn (Zea mays L.), we show that this transition in pHapo conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pHapo was monitored in planta via microscopy-based ratio imaging, and the leaf-proteomic response to the transient leaf apoplastic alkalinization was analyzed via ultra-high performance liquid chromatography-MS. This analysis identified 1459 proteins, of which 44 exhibited increased abundance specifically through the chloride-induced transient rise in pHapo These elevated protein abundances did not directly arise from high tissue concentrations of Cl- or Na+ but were due to changes in the pHapo Most of these proteins functioned in growth-relevant processes and in the synthesis of cell wall-building components such as arabinose. Measurements with a linear-variable differential transducer revealed that the transient alkalinization rigidified (i.e. stiffened) the cell wall during the onset of chloride salinity. A decrease in t-coumaric and t-ferulic acids indicates that the wall stiffening arises from cross-linkage to cell wall polymers. We conclude that the pH of the apoplast represents a dynamic factor that is mechanistically coupled to cellular responses to chloride stress. By hardening the wall, the increased pH abrogates wall loosening required for cell expansion and growth. We conclude that the transient alkalinization of the leaf apoplast is related to salinity-induced growth reduction.

SUBMITTER: Geilfus CM 

PROVIDER: S-EPMC5704465 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves.

Geilfus Christoph-Martin CM   Tenhaken Raimund R   Carpentier Sebastien Christian SC  

The Journal of biological chemistry 20170927 46


During chloride salinity, the pH of the leaf apoplast (pH<sub>apo</sub>) transiently alkalizes. There is an ongoing debate about the physiological relevance of these stress-induced pH<sub>apo</sub> changes. Using proteomic analyses of expanding leaves of corn (<i>Zea mays</i> L.), we show that this transition in pH<sub>apo</sub> conveys functionality by (i) adjusting protein abundances and (ii) affecting the rheological properties of the cell wall. pH<sub>apo</sub> was monitored <i>in planta</i>  ...[more]

Similar Datasets

| S-EPMC4329417 | biostudies-literature
| S-EPMC6508812 | biostudies-literature
| S-EPMC4507197 | biostudies-literature
| S-EPMC5821973 | biostudies-literature
| S-EPMC6960232 | biostudies-literature
| S-EPMC5448416 | biostudies-literature
| S-EPMC10861783 | biostudies-literature
| S-EPMC8584485 | biostudies-literature
| S-EPMC8481871 | biostudies-literature
| S-EPMC7020146 | biostudies-literature