Unknown

Dataset Information

0

Oval Cells Contribute to Fibrogenesis of Marginal Liver Grafts under Stepwise Regulation of Aldose Reductase and Notch Signaling.


ABSTRACT: Background and Aims: Expanded donor criteria poses increased risk for late phase complications such as fibrosis that lead to graft dysfunction in liver transplantation. There remains a need to elucidate the precise mechanisms of post-transplant liver damage in order to improve the long-term outcomes of marginal liver grafts. In this study, we aimed to examine the role of oval cells in fibrogenic development of marginal liver grafts and explore the underlying mechanisms. Methods: Using an orthotopic rat liver transplantation model and human post-transplant liver biopsy tissues, the dynamics of oval cells in marginal liver grafts was evaluated by the platform integrating immuno-labeling techniques and ultrastructure examination. Underlying mechanisms were further explored in oval cells and an Aldose reductase (AR) knockout mouse model simulating marginal graft injury. Results: We demonstrated that activation of aldose reductase initiated oval cell proliferation in small-for-size fatty grafts during ductular reaction at the early phase after transplantation. These proliferative oval cells subsequently showed prevailing biliary differentiation and exhibited features of mesenchymal transition including dynamically co-expressing epithelial and mesenchymal markers, developing microstructures for extra-cellular matrix degradation (podosomes) or cell migration (filopodia and blebs), and acquiring the capacity in collagen production. Mechanistic studies further indicated that transition of oval cell-derived biliary cells toward mesenchymal phenotype ensued fibrogenesis in marginal grafts under the regulation of notch signaling pathway. Conclusions: Oval cell activation and their subsequent lineage commitment contribute to post-transplant fibrogenesis of small-for-size fatty liver grafts. Interventions targeting oval cell dynamics may serve as potential strategies to refine current clinical management.

SUBMITTER: Liu XB 

PROVIDER: S-EPMC5706107 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Oval Cells Contribute to Fibrogenesis of Marginal Liver Grafts under Stepwise Regulation of Aldose Reductase and Notch Signaling.

Liu Xiao-Bing XB   Lo Chung-Mau CM   Cheng Qiao Q   Ng Kevin Tak-Pan KT   Shao Yan Y   Li Chang-Xian CX   Chung Sookja K SK   Ng Irene Oi Lin IOL   Yu Jun J   Man Kwan K  

Theranostics 20171024 19


<b>Background and Aims:</b> Expanded donor criteria poses increased risk for late phase complications such as fibrosis that lead to graft dysfunction in liver transplantation. There remains a need to elucidate the precise mechanisms of post-transplant liver damage in order to improve the long-term outcomes of marginal liver grafts. In this study, we aimed to examine the role of oval cells in fibrogenic development of marginal liver grafts and explore the underlying mechanisms. <b>Methods</b>: Us  ...[more]

Similar Datasets

| S-EPMC4874345 | biostudies-literature
| S-EPMC6395642 | biostudies-literature
| S-EPMC3475326 | biostudies-literature
| S-EPMC3169411 | biostudies-literature
| S-EPMC7407822 | biostudies-literature
| S-EPMC6844136 | biostudies-literature
2023-04-05 | GSE200233 | GEO
| S-EPMC1147398 | biostudies-other
| S-EPMC4669829 | biostudies-other
| S-EPMC2909072 | biostudies-literature