Unknown

Dataset Information

0

The OxyR-regulated phnW gene encoding 2-aminoethylphosphonate:pyruvate aminotransferase helps protect Pseudomonas aeruginosa from tert-butyl hydroperoxide.


ABSTRACT: The LysR member of bacterial transactivators, OxyR, governs transcription of genes involved in the response to H2O2 and organic (alkyl) hydroperoxides (AHP) in the Gram-negative pathogen, Pseudomonas aeruginosa. We have previously shown that organisms lacking OxyR are rapidly killed by <2 or 500 mM H2O2 in planktonic and biofilm bacteria, respectively. In this study, we first employed a bioinformatic approach to elucidate the potential regulatory breadth of OxyR by scanning the entire P. aeruginosa PAO1 genome for canonical OxyR promoter recognition sequences (ATAG-N7-CTAT-N7-ATAG-N7-CTAT). Of >100 potential OxyR-controlled genes, 40 were strategically selected that were not predicted to be involved in the direct response to oxidative stress (e.g., catalase, peroxidase, etc.) and screened such genes by RT-PCR analysis for potentially positive or negative control by OxyR. Differences were found in 7 of 40 genes when comparing an oxyR mutant vs. PAO1 expression that was confirmed by ß-galactosidase reporter assays. Among these, phnW, encoding 2-aminoethylphosphonate:pyruvate aminotransferase, exhibited reduced expression in the oxyR mutant compared to wild-type bacteria. Electrophoretic mobility shift assays indicated binding of OxyR to the phnW promoter and DNase I footprinting analysis also revealed the sequences to which OxyR bound. Interestingly, a phnW mutant was more susceptible to t-butyl-hydroperoxide (t-BOOH) treatment than wild-type bacteria. Although we were unable to define the direct mechanism underlying this phenomenon, we believe that this may be due to a reduced efficiency for this strain to degrade t-BOOH relative to wild-type organisms because of modulation of AHP gene transcription in the phnW mutant.

SUBMITTER: Panmanee W 

PROVIDER: S-EPMC5720770 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

The OxyR-regulated phnW gene encoding 2-aminoethylphosphonate:pyruvate aminotransferase helps protect Pseudomonas aeruginosa from tert-butyl hydroperoxide.

Panmanee Warunya W   Charoenlap Nisanart N   Atichartpongkul Sopapan S   Mahavihakanont Aekkapol A   Whiteside Matthew D MD   Winsor Geoff G   Brinkman Fiona S L FSL   Mongkolsuk Skorn S   Hassett Daniel J DJ  

PloS one 20171207 12


The LysR member of bacterial transactivators, OxyR, governs transcription of genes involved in the response to H2O2 and organic (alkyl) hydroperoxides (AHP) in the Gram-negative pathogen, Pseudomonas aeruginosa. We have previously shown that organisms lacking OxyR are rapidly killed by <2 or 500 mM H2O2 in planktonic and biofilm bacteria, respectively. In this study, we first employed a bioinformatic approach to elucidate the potential regulatory breadth of OxyR by scanning the entire P. aerugin  ...[more]

Similar Datasets

| S-EPMC6789818 | biostudies-literature
| S-EPMC8808075 | biostudies-literature
| S-EPMC2465813 | biostudies-literature
| S-EPMC2730049 | biostudies-literature
| S-EPMC8002998 | biostudies-literature
| S-EPMC9204554 | biostudies-literature
2018-11-21 | PXD008251 | Pride
| S-EPMC6440166 | biostudies-literature
| S-EPMC4215121 | biostudies-literature
| S-EPMC5629392 | biostudies-literature