A phase III randomized trial of gantenerumab in prodromal Alzheimer's disease.
Ontology highlight
ABSTRACT: Gantenerumab is a fully human monoclonal antibody that binds aggregated amyloid-? (A?) and removes A? plaques by Fc receptor-mediated phagocytosis. In the SCarlet RoAD trial, we assessed the efficacy and safety of gantenerumab in prodromal Alzheimer's disease (AD).In this randomized, double-blind, placebo-controlled phase III study, we investigated gantenerumab over 2 years. Patients were randomized to gantenerumab 105 mg or 225 mg or placebo every 4 weeks by subcutaneous injection. The primary endpoint was the change from baseline to week 104 in Clinical Dementia Rating Sum of Boxes (CDR-SB) score. We evaluated treatment effects on cerebrospinal fluid biomarkers (all patients) and amyloid positron emission tomography (substudy). A futility analysis was performed once 50% of patients completed 2 years of treatment. Safety was assessed in patients who received at least one dose.Of the 3089 patients screened, 797 were randomized. The study was halted early for futility; dosing was discontinued; and the study was unblinded. No differences between groups in the primary (least squares mean [95% CI] CDR-SB change from baseline 1.60 [1.28, 1.91], 1.69 [1.37, 2.01], and 1.73 [1.42, 2.04] for placebo, gantenerumab 105 mg, and gantenerumab 225 mg, respectively) or secondary clinical endpoints were observed. The incidence of generally asymptomatic amyloid-related imaging abnormalities increased in a dose- and APOE ?4 genotype-dependent manner. Exploratory analyses suggested a dose-dependent drug effect on clinical and biomarker endpoints.The study was stopped early for futility, but dose-dependent effects observed in exploratory analyses on select clinical and biomarker endpoints suggest that higher dosing with gantenerumab may be necessary to achieve clinical efficacy.ClinicalTrials.gov, NCT01224106 . Registered on October 14, 2010.
<h4>Background</h4>Gantenerumab is a fully human monoclonal antibody that binds aggregated amyloid-β (Aβ) and removes Aβ plaques by Fc receptor-mediated phagocytosis. In the SCarlet RoAD trial, we assessed the efficacy and safety of gantenerumab in prodromal Alzheimer's disease (AD).<h4>Methods</h4>In this randomized, double-blind, placebo-controlled phase III study, we investigated gantenerumab over 2 years. Patients were randomized to gantenerumab 105 mg or 225 mg or placebo every 4 weeks by s ...[more]
Project description:BackgroundProdromal Alzheimer's disease offers an opportunity to test the effect of drugs that modify the deposition of amyloid in the brain before the onset of dementia. Verubecestat is an orally administered β-site amyloid precursor protein-cleaving enzyme 1 (BACE-1) inhibitor that blocks production of amyloid-beta (Aβ). The drug did not prevent clinical progression in a trial involving patients with mild-to-moderate dementia due to Alzheimer's disease.MethodsWe conducted a randomized, double-blind, placebo-controlled, 104-week trial to evaluate verubecestat at doses of 12 mg and 40 mg per day, as compared with placebo, in patients who had memory impairment and elevated brain amyloid levels but whose condition did not meet the case definition of dementia. The primary outcome was the change from baseline to week 104 in the score on the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB; scores range from 0 to 18, with higher scores indicating worse cognition and daily function). Secondary outcomes included other assessments of cognition and daily function.ResultsThe trial was terminated for futility after 1454 patients had been enrolled; 485 had been assigned to receive verubecestat at a dose of 12 mg per day (the 12-mg group), 484 to receive verubecestat at a dose of 40 mg per day (the 40-mg group), and 485 to receive placebo. A total of 234 patients, 231 patients, and 239 patients per group, respectively, completed 104 weeks of the trial regimen. The estimated mean change from baseline to week 104 in the CDR-SB score was 1.65 in the 12-mg group, 2.02 in the 40-mg group, and 1.58 in the placebo group (P = 0.67 for the comparison between the 12-mg group and the placebo group and P = 0.01 for the comparison between the 40-mg group and the placebo group), suggesting a worse outcome in the higher-dose group than in the placebo group. The estimated rate of progression to dementia due to Alzheimer's disease was 24.5, 25.5, and 19.3 events per 100 patient-years in the 12-mg group, the 40-mg group, and the placebo group, respectively (hazard ratio for 40 mg vs. placebo, 1.38; 97.51% confidence interval, 1.07 to 1.79, not adjusted for multiple comparisons), favoring placebo. Adverse events were more common in the verubecestat groups than in the placebo group.ConclusionsVerubecestat did not improve clinical ratings of dementia among patients with prodromal Alzheimer's disease, and some measures suggested that cognition and daily function were worse among patients who received verubecestat than among those who received placebo. (Funded by Merck Sharp & Dohme; ClinicalTrials.gov number, NCT01953601.).
Project description:BACKGROUND:We previously investigated low doses (105 or 225 mg) of gantenerumab, a fully human monoclonal antibody that binds and removes aggregated amyloid-β by Fc receptor-mediated phagocytosis, in the SCarlet RoAD (SR) and Marguerite RoAD (MR) phase 3 trials. Several lines of evidence suggested that higher doses may be necessary to achieve clinical efficacy. We therefore designed a positron emission tomography (PET) substudy to evaluate the effect of gantenerumab uptitrated to 1200 mg every 4 weeks on amyloid-β plaques as measured using florbetapir PET in patients with prodromal to moderate Alzheimer's disease (AD). METHODS:A subset of patients enrolled in the SR and MR studies who subsequently entered the open-label extensions (OLEs) were included in this substudy. Patients were aged 50 to 90 years with a clinical diagnosis of probable prodromal to moderate AD and were included based on a visual read of the original screening scan in the double-blind phase. Patients were assigned to 1 of 5 titration schedules (ranging from 2 to 10 months) with a target gantenerumab dose of 1200 mg every 4 weeks. The main endpoint of this substudy was change in amyloid-β plaque burden from OLE baseline to week 52 and week 104, assessed using florbetapir PET. Florbetapir global cortical signal was calculated using a prespecified standard uptake value ratio method converted to the Centiloid scale. RESULTS:Sixty-seven of the 89 patients initially enrolled had ≥ 1 follow-up scan by August 15, 2018. Mean amyloid levels were reduced by 39 Centiloids by the first year and 59 Centiloids by year 2, a 3.5-times greater reduction than was seen after 2 years at 225 mg in SR. At years 1 and 2, 37% and 51% of patients, respectively, had amyloid-β plaque levels below the amyloid-β positivity threshold. CONCLUSION:Results from this exploratory interim analysis of the PET substudy suggest that gantenerumab doses up to 1200 mg resulted in robust amyloid-β plaque removal at 2 years. PET amyloid levels were consistent with sparse-to-no neuritic amyloid-β plaques in 51% of patients after 2 years of therapy. Amyloid reductions were similar to those observed in other placebo-controlled studies that have suggested potential clinical benefit. TRIAL REGISTRATION:ClinicalTrials.gov, NCT01224106 (SCarlet RoAD) and NCT02051608 (Marguerite RoAD).
Project description:Dominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.
Project description:Selecting the right dose is a significant challenge in designing clinical development programs, especially for slowly progressing diseases lacking predictive biomarkers of efficacy that may require long-term treatment to assess clinical benefit. Gantenerumab, a fully human monoclonal antibody (mAb) that binds to aggregated amyloid-beta, was tested in two 24-month phase III studies (NCT01224106, NCT02051608) in participants with prodromal and mild Alzheimer's disease (AD), respectively. Dosing in the first phase III study was suspended after a preplanned interim futility analysis in 2014. Subsequently, a dose-response relationship was observed in a subgroup of fast AD progressors that, together with contemporary aducanumab (another anti-amyloid-beta mAb) data, indicated higher doses may be needed for clinical efficacy. The gantenerumab phase III studies were therefore transformed into dose-finding, open-label extension (OLE) trials. Two exposure-response models were developed to support dose selection via simulations for the OLEs: a pharmacokinetics (PK)/PET (positron emission tomography) model describing amyloid removal using PET data from low-dose gantenerumab and high-dose aducanumab, and a PK/ARIA-E (amyloid-related imaging abnormalities-edema) model describing the occurrence of ARIA-E events leveraging an existing bapineuzumab model. Multiple regimens were designed to gradually up-titrate participants to the target dose of 1,200 mg gantenerumab every 4 weeks to mitigate the increased risk of ARIA-E events that may be associated with higher doses of anti-amyloid-beta antibodies. Favorable OLE data that matched well with model predictions supported the decision to continue the gantenerumab clinical development program and further apply model-based analytical techniques to optimize the design of new phase III studies.
Project description:Acetylcholinesterase inhibitors are approved drugs currently used for the treatment of Alzheimer's disease (AD) dementia. Basal forebrain cholinergic system (BFCS) atrophy is reported to precede both entorhinal cortex atrophy and memory impairment in AD, challenging the traditional model of the temporal sequence of topographical pathology associated with AD. We studied the effect of one-year Donepezil treatment on the rate of BFCS atrophy in prodromal AD patients using a double-blind, randomized, placebo-controlled trial of Donepezil (10?mg/day). Reduced annual BFCS rates of atrophy were found in the Donepezil group compared to the Placebo treated arm. Secondary analyses on BFCS subregions demonstrated the largest treatment effects in the Nucleus Basalis of Meynert (NbM) and the medial septum/diagonal band (Ch1/2). Donepezil administered at a prodromal stage of AD seems to substantially reduce the rate of atrophy of the BFCS nuclei with highest concentration of cholinergic neurons projecting to the cortex (NbM), hippocampus and entorhinal cortex (Ch1/2).
Project description:BackgroundGiven the growing older population worldwide, and the associated increase in age-related diseases, such as Alzheimer's disease (AD), investigating non-invasive methods to ameliorate or even prevent cognitive decline in prodromal AD is highly relevant. Previous studies suggest transcranial direct current stimulation (tDCS) to be an effective method to boost cognitive performance, especially when applied in combination with cognitive training in healthy older adults. So far, no studies combining tDCS concurrent with an intense multi-session cognitive training in prodromal AD populations have been conducted.MethodsThe AD-Stim trial is a monocentric, randomized, double-blind, placebo-controlled study, including a 3-week tDCS-assisted cognitive training with anodal tDCS over left DLPFC (target intervention), compared to cognitive training plus sham (control intervention). The cognitive training encompasses a letter updating task and a three-stage Markov decision-making task. Forty-six participants with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) will be randomized block-wise to either target or control intervention group and participate in nine interventional visits with additional pre- and post-intervention assessments. Performance in the letter updating task after training and anodal tDCS compared to sham stimulation will be analyzed as primary outcome. Further, performance on the second training task and transfer tasks will be investigated. Two follow-up visits (at 1 and 7 months post-training) will be performed to assess possible maintenance effects. Structural and functional magnetic resonance imaging (MRI) will be applied before the intervention and at the 7-month follow-up to identify possible neural predictors for successful intervention.SignificanceWith this trial, we aim to provide evidence for tDCS-induced improvements of multi-session cognitive training in participants with SCD and MCI. An improved understanding of tDCS effects on cognitive training performance and neural predictors may help to develop novel approaches to counteract cognitive decline in participants with prodromal AD.Trial registrationClinicalTrials.gov , NCT04265378 . Registered on 07 February 2020. Retrospectively registered. Protocol version: Based on BB 004/18 version 1.2 (May 17, 2019).SponsorUniversity Medicine Greifswald.
Project description:IntroductionThe LipiDiDiet trial investigates the effects of the specific multinutrient combination Fortasyn Connect on cognition and related measures in prodromal Alzheimer's disease (AD). Based on previous results we hypothesized that benefits increase with long-term intervention.MethodsIn this randomized, double-blind, placebo-controlled trial, 311 people with prodromal AD were recruited using the International Working Group-1 criteria and assigned to active product (125 mL once-a-day drink) or an isocaloric, same tasting, placebo control drink. Main outcome was change in cognition (Neuropsychological Test Battery [NTB] 5-item composite). Analyses were by modified intention-to-treat, excluding (ie, censoring) data collected after the start of open-label active product and/or AD medication.ResultsOf the 382 assessed for eligibility, 311 were randomized, of those 162 participants completed the 36-month study, including 81 with 36-month data eligible for efficacy analysis. Over 36 months, significant reductions in decline were observed for the NTB 5-item composite (-60%; between-group difference 0.212 [95% confidence interval: 0.044 to 0.380]; P = 0.014), Clinical Dementia Rating-Sum of Boxes (-45%; P = 0.014), memory (-76%; P = 0.008), and brain atrophy measures; small to medium Cohen's d effect size (0.25-0.31) similar to established clinically relevant AD treatment.DiscussionThis multinutrient intervention slowed decline on clinical and other measures related to cognition, function, brain atrophy, and disease progression. These results indicate that intervention benefits increased with long-term use.
Project description:Alzheimer's disease (AD) and Parkinson's disease (PD) are the first and second most common neurodegenerative disorders, respectively. Both are proteinopathies with inexorable courses and no approved disease-modifying therapies. A substantial effort has been made to identify interventions that could slow down the progression of AD and PD; to date, with no success. The advances in biomarker research improved the identification of individuals at risk for these disorders before symptom onset, recognizing the pre-clinical stage, in which there is abnormal protein accumulation but no clinical symptoms of the disease, and the prodromal stage, in which mild symptoms are present but the clinical diagnostic criteria for disease cannot be fulfilled. The ability to detect pre-clinical and prodromal stages of these diseases has encouraged clinical trials for disease-modification at earlier phases, seeking to slow or prevent phenoconversion into clinical disease. Clinical trials at these stages have several challenges, such as the identification of the eligible population, the appropriate choice of biomarkers, the definition of clinical endpoints, the duration of follow-up, and the statistical analysis. This article aims to discuss some of the methodological challenges in the design of trials for pre-clinical and prodromal phases of AD and PD, to critically review the recent studies, and to discuss methodological approaches to mitigate these challenges in trial design.
Project description:BackgroundDelaying the transition from minimal cognitive impairment to Alzheimer's dementia is a major concern in Alzheimer's disease (AD) therapeutics. Pathological signs of AD occur years before the onset of clinical dementia. Thus, long-term therapeutic approaches, with safe, minimally invasive, and yet effective substances are recommended. There is a need to develop new drugs to delay Alzheimer's dementia. We have taken a nutritional supplement approach with genistein, a chemically defined polyphenol that acts by multimodal specific mechanisms. Our group previously showed that genistein supplementation is effective to treat the double transgenic (APP/PS1) AD animal model.MethodsIn this double-blind, placebo-controlled, bicentric clinical trial, we evaluated the effect of daily oral supplementation with 120 mg of genistein for 12 months on 24 prodromal Alzheimer's disease patients. The amyloid-beta deposition was analyzed using 18F-flutemetamol uptake. We used a battery of validated neurocognitive tests: Mini-Mental State Exam (MMSE), Memory Alteration Test (M@T), Clock Drawing Test, Complutense Verbal Learning Test (TAVEC), Barcelona Test-Revised (TBR), and Rey Complex Figure Test.ResultsWe report that genistein treatment results in a significant improvement in two of the tests used (dichotomized direct TAVEC, p = 0.031; dichotomized delayed Centil REY copy p = 0.002 and a tendency to improve in all the rest of them. The amyloid-beta deposition analysis showed that genistein-treated patients did not increase their uptake in the anterior cingulate gyrus after treatment (p = 0.878), while placebo-treated did increase it (p = 0.036). We did not observe significant changes in other brain areas studied.ConclusionsThis study shows that genistein may have a role in therapeutics to delay the onset of Alzheimer's dementia in patients with prodromal Alzheimer's disease. These encouraging results indicate that this should be followed up by a new study with more patients to further validate the conclusion that arises from this study.Trial registrationNCT01982578, registered on November 13, 2013.
Project description:IntroductionWe and collaborators discovered that flickering lights and sound at gamma frequency (40 Hz) reduce Alzheimer's disease (AD) pathology and alter immune cells and signaling in mice. To determine the feasibility of this intervention in humans we tested the safety, tolerability, and daily adherence to extended audiovisual gamma flicker stimulation.MethodsTen patients with mild cognitive impairment due to underlying AD received 1-hour daily gamma flicker using audiovisual stimulation for 4 or 8 weeks at home with a delayed start design.ResultsGamma flicker was safe, tolerable, and adherable. Participants' neural activity entrained to stimulation. Magnetic resonance imaging and cerebral spinal fluid proteomics show preliminary evidence that prolonged flicker affects neural networks and immune factors in the nervous system.DiscussionThese findings show that prolonged gamma sensory flicker is safe, tolerable, and feasible with preliminary indications of immune and network effects, supporting further study of gamma stimulation in AD.