Project description:Intraoperative fluorescence imaging (IFI) can improve real-time identification of cancer cells during an operation. Phase I clinical trials in thoracic surgery have demonstrated that IFI with second window indocyanine green (TumorGlow® ) can identify subcentimeter pulmonary nodules, anterior mediastinal masses, and mesothelioma, while the use of a folate receptor-targeted near-infrared agent, OTL38, can improve the specificity for diagnosing tumors with folate receptor expression. Here, we review the existing preclinical and clinical data on IFI in thoracic surgery.
Project description:Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care.
Project description:ObjectiveIn this review, we provide examples of applications of fluorescence imaging in urologic, gynecologic, general, and endocrine surgeries.BackgroundWhile robotic-assisted surgery has helped increase the availability of minimally invasive procedures across surgical specialties, there remains an opportunity to reduce adverse events associated with open, laparoscopic, and robotic-assisted methods. In 2011, fluorescence imaging was introduced as an option to the da Vinci Surgical System, and has been standard equipment since 2014. Without interfering with surgical workflow, this fluorescence technology named Firefly® allows for acquisition and display of near-infrared fluorescent signals that are co-registered with white light endoscopic images. As a result, robotic surgeons of all specialties have been able to explore the clinical utility of fluorescence guided surgery.MethodsLiterature searches were performed using the PubMed and MEDLINE databases using the keywords "robotic-assisted fluorescence surgery", "ICG robotic surgery", and "fluorescence guided surgery" covering the years 2011-2020.ConclusionsReal-time intraoperative fluorescence guidance has shown great potential in helping guide surgeons in both simple and complex surgical interventions. Indocyanine green is one of the most widely-used imaging agents in fluorescence guided surgery, and other targeted, near-infrared imaging agents are in various stages of development. Fluorescence is becoming a reliable tool that can help surgeons in their decision-making process in some specialties, while explorations continue in others.
Project description:Cell states are regulated by extrinsic signals from various external factors such as intercellular interactions, and intrinsic gene expression. Although comprehensive cell state profiling has been attempted, it remains simultaneous analysis of signal activation has still been challenging. Multiplexed imaging is a technique acquiring multiple protein information at a single cell level as traditional immunofluorescence. However, the method often compromises resolution, hindering the analysis of intracellular localization dynamics and post-translational modifications of proteins. To address these limitations, we developed an erasable fluorescence method using disulfide linkers to label antibodies. We term these antibodies ‘Precise Emission Canceling Antibodies (PECAbs)’. PECAb allows for high-resolution iterative imaging with minimal non-specific binding. Automation enables our system to achieve reproducible quantitative analysis using 206 antibodies. The resulting quantitative data allow reconstruction of the spatiotemporal dynamics of signaling pathways over both long and short timescales. Additionally, combining this approach with sequential RNA-FISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system serves as a comprehensive platform for analyzing complex cell processes, from signal transduction to gene expression.
Project description:Cell states are regulated by extrinsic signals from various external factors such as intercellular interactions, and intrinsic gene expression. Although comprehensive cell state profiling has been attempted, it remains simultaneous analysis of signal activation has still been challenging. Multiplexed imaging is a technique acquiring multiple protein information at a single cell level as traditional immunofluorescence. However, the method often compromises resolution, hindering the analysis of intracellular localization dynamics and post-translational modifications of proteins. To address these limitations, we developed an erasable fluorescence method using disulfide linkers to label antibodies. We term these antibodies ‘Precise Emission Canceling Antibodies (PECAbs)’. PECAb allows for high-resolution iterative imaging with minimal non-specific binding. Automation enables our system to achieve reproducible quantitative analysis using 206 antibodies. The resulting quantitative data allow reconstruction of the spatiotemporal dynamics of signaling pathways over both long and short timescales. Additionally, combining this approach with sequential RNA-FISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system serves as a comprehensive platform for analyzing complex cell processes, from signal transduction to gene expression.
Project description:The quality of mesorectal resection is crucial for resection in rectal cancer, which should be performed by laparoscopy for better outcome. The use of indocyanine green (ICG) fluorescence is now routinely used in some centers to evaluate bowel perfusion. Previous studies have demonstrated in animal models that selective intra-arterial ICG staining can be used to define and visualize resection margins in rectal cancer. In this animal study, we investigate if laparoscopic intra-arterial catheterization is feasible and the staining of resection margins when performing total mesorectal excision with a laparoscopic medial to lateral approach is possible. In 4 pigs, laparoscopic catheterization of the inferior mesenteric artery (IMA) is performed using a seldinger technique. After a bolus injection of 10 ml ICG with a concentration of 0.25 mg/ml, a continuous intra-arterial perfusion was established at a rate of 2 ml/min. The quality of the staining was evaluated qualitatively. Laparoscopic catheterization was possible in all cases, and the average time for this was 30.25 ± 3.54 min. We observed a significant fluorescent signal in all areas of the IMA supplied, but not in other parts of the abdominal cavity or organs. In addition, the mesorectum showed a sharp border between stained and unstained tissue. Intraoperative isolated fluorescence augmentation of the rectum, including the mesorectum by laparoscopic catheterization, is feasible. Inferior mesenteric artery catheterization and ICG perfusion can provide a fluorescence-guided roadmap to identify the correct plane in total mesorectal excision, which should be investigated in further studies.
Project description:We demonstrate for the first time the application of an endoscopic fluorescence lifetime imaging microscopy (FLIM) system to the intraoperative diagnosis of glioblastoma multiforme (GBM). The clinically compatible FLIM prototype integrates a gated (down to 0.2 ns) intensifier imaging system with a fiber-bundle (fiber image guide of 0.5 mm diameter, 10,000 fibers with a gradient index lens objective 0.5 NA, and 4 mm field of view) to provide intraoperative access to the surgical field. Experiments conducted in three patients undergoing craniotomy for tumor resection demonstrate that FLIM-derived parameters allow for delineation of tumor from normal cortex. For example, at 460±25-nm wavelength band emission corresponding to NADH/NADPH fluorescence, GBM exhibited a weaker fluorescence intensity (35% less, p-value<0.05) and a longer lifetime τGBM-Amean=1.59±0.24 ns than normal cortex τNC-Amean=1.28±0.04 ns (p-value<0.005). Current results demonstrate the potential use of FLIM as a tool for image-guided surgery of brain tumors.
Project description:The different pathways between the position of a near-infrared camera and the user's eye limit the use of existing near-infrared fluorescence imaging systems for tumor margin assessments. By utilizing an optical system that precisely matches the near-infrared fluorescence image and the optical path of visible light, we developed an augmented reality (AR)-based fluorescence imaging system that provides users with a fluorescence image that matches the real-field, without requiring any additional algorithms. Commercial smart glasses, dichroic beam splitters, mirrors, and custom near-infrared cameras were employed to develop the proposed system, and each mount was designed and utilized. After its performance was assessed in the laboratory, preclinical experiments involving tumor detection and lung lobectomy in mice and rabbits by using indocyanine green (ICG) were conducted. The results showed that the proposed system provided a stable image of fluorescence that matched the actual site. In addition, preclinical experiments confirmed that the proposed system could be used to detect tumors using ICG and evaluate lung lobectomies. The AR-based intraoperative smart goggle system could detect fluorescence images for tumor margin assessments in animal models, without disrupting the surgical workflow in an operating room. Additionally, it was confirmed that, even when the system itself was distorted when worn, the fluorescence image consistently matched the actual site.