Saikosaponin-d, a calcium mobilizing agent, sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis by facilitating mitochondrial fission and G2/M arrest.
Ontology highlight
ABSTRACT: Cisplatin (CDDP) and its derivatives are first line anti-cancer drugs for ovarian cancer (OVCA). However, chemoresistance due to high incidence of p53 mutations leads to poor clinical prognosis. Saikosaponin-d (Ssd), a saponin from a herbal plant extract, has been shown to induce cell death and sensitize chemoresistant cells to chemotherapeutic agents. Here, we demonstrated that Ssd sensitized chemoresistant OVCA cells with either p53-wt, -mutant and -null to CDDP. The action of Ssd appears to be through induction of mitochondrial fragmentation and G2/M arrest. Ssd is mediated via calcium signaling, up-regulation of the mitochondrial fission proteins Dynamin-related protein 1 (Drp1) and optic atrophy 1 (Opa1), and loss in mitochondrial membrane potential (MMP). Moreover, in the presence of CDDP, Ssd also down-regulates protein phosphatase magnesium-dependent 1 D (PPM1D) and increases the phosphorylation of checkpoint protein kinases (Chk) 1, cell division cycle 25c (Cdc25c) and Cyclin dependent kinase 1 (Cdk1). Our findings suggest that Ssd could sensitize OVCA to CDDP independent of the p53 status through multiple signaling pathways. They support the notion that Ssd may be a novel adjuvant for the treatment of chemoresistant OVCA.
SUBMITTER: Tsuyoshi H
PROVIDER: S-EPMC5725134 | biostudies-literature | 2017 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA