Functional selectivity of GPCR-directed drug action through location bias.
Ontology highlight
ABSTRACT: G-protein-coupled receptors (GPCRs) are increasingly recognized to operate from intracellular membranes as well as the plasma membrane. The ?2-adrenergic GPCR can activate Gs-linked cyclic AMP (Gs-cAMP) signaling from endosomes. We show here that the homologous human ?1-adrenergic receptor initiates an internal Gs-cAMP signal from the Golgi apparatus. By developing a chemical method to acutely squelch G-protein coupling at defined membrane locations, we demonstrate that Golgi activation contributes significantly to the overall cellular cAMP response. Golgi signaling utilizes a preexisting receptor pool rather than receptors delivered from the cell surface, requiring separate access of extracellular ligands. Epinephrine, a hydrophilic endogenous ligand, accesses the Golgi-localized receptor pool by facilitated transport requiring the organic cation transporter 3 (OCT3), whereas drugs can access the Golgi pool by passive diffusion according to hydrophobicity. We demonstrate marked differences, among both agonist and antagonist drugs, in Golgi-localized receptor access and show that ?-blocker drugs currently used in the clinic differ markedly in ability to antagonize the Golgi signal. We propose 'location bias' as a new principle for achieving functional selectivity of GPCR-directed drug action.
SUBMITTER: Irannejad R
PROVIDER: S-EPMC5733145 | biostudies-literature | 2017 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA