Unknown

Dataset Information

0

A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking.


ABSTRACT: In biological membranes, many factors such as cytoskeleton, lipid composition, crowding, and molecular interactions deviate lateral diffusion from the expected random walks. These factors have different effects on diffusion but act simultaneously, so the observed diffusion is a complex mixture of diffusive behaviors (directed, Brownian, anomalous, or confined). Therefore, commonly used approaches to quantify diffusion based on averaging of the displacements such as the mean square displacement, are not adapted to the analysis of this heterogeneity. We introduce a parameter-the packing coefficient Pc, which gives an estimate of the degree of free movement that a molecule displays in a period of time independently of its global diffusivity. Applying this approach to two different situations (diffusion of a lipid probe and trapping of receptors at synapses), we show that Pc detected and localized temporary changes of diffusive behavior both in time and in space. More importantly, it allowed the detection of periods with very high confinement as well as their frequency and duration, and thus it can be used to calculate the effective kon and koff of scaffolding interactions such as those that immobilize receptors at synapses.

SUBMITTER: Renner M 

PROVIDER: S-EPMC5738498 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking.

Renner Marianne M   Wang Lili L   Levi Sabine S   Hennekinne Laetitia L   Triller Antoine A  

Biophysical journal 20171201 11


In biological membranes, many factors such as cytoskeleton, lipid composition, crowding, and molecular interactions deviate lateral diffusion from the expected random walks. These factors have different effects on diffusion but act simultaneously, so the observed diffusion is a complex mixture of diffusive behaviors (directed, Brownian, anomalous, or confined). Therefore, commonly used approaches to quantify diffusion based on averaging of the displacements such as the mean square displacement,  ...[more]

Similar Datasets

| S-EPMC1304693 | biostudies-literature
| S-EPMC4303509 | biostudies-literature
| S-EPMC4747024 | biostudies-literature
| S-EPMC3905702 | biostudies-literature
| S-EPMC2810327 | biostudies-literature
| S-EPMC7695977 | biostudies-literature
| S-EPMC6362069 | biostudies-literature
| S-EPMC4657870 | biostudies-literature
| S-EPMC5809147 | biostudies-literature
| S-EPMC2790617 | biostudies-literature