Unknown

Dataset Information

0

Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: Simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts.


ABSTRACT: Chemical exchange saturation transfer (CEST) MRI has shown promise in tissue characterization in diseases like stroke and tumor. However, in vivo CEST imaging such as amide proton transfer (APT) MRI is challenging because of concomitant factors such as direct water saturation, macromolecular magnetization transfer, and nuclear overhauser effect (NOE), which lead to a complex contrast in the commonly used asymmetry analysis (MTRasym). Here, we propose a direct saturation-corrected CEST (DISC-CEST) analysis for simplified decoupling and quantification of in vivo CEST effects.CEST MRI and relaxation measurements were carried out on a classical 2-pool creatine-gel CEST phantom and normal rat brains (N?=?6) and a rat model of glioma (N?=?8) at 4.7T. The proposed DISC-CEST quantification was carried out and compared with conventional MTRasym and the original three-offset method.We demonstrated that the DISC-CEST contrast in the phantom had much stronger correlation with MTRasym than the three-offset method, which showed substantial underestimation. In normal rat brains, the DISC-CEST approach revealed significantly stronger APT effect in gray matter and higher NOE effect in white matter. Furthermore, the APT and NOE maps derived from DISC-CEST showed significantly higher APT effect in the tumors than contralateral normal tissue but no apparent difference in NOE.The proposed DISC-CEST method, by correction of nonlinear direct water saturation effect, serves as a promising alternative to both the commonly used MTRasym and the simplistic three-offset analyses. It provides simple yet reliable in vivo CEST quantification such as APT and NOE mapping in brain tumor, which is promising for clinical translation. Magn Reson Med 78:2307-2314, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

SUBMITTER: Yuwen Zhou I 

PROVIDER: S-EPMC5744877 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Direct saturation-corrected chemical exchange saturation transfer MRI of glioma: Simplified decoupling of amide proton transfer and nuclear overhauser effect contrasts.

Yuwen Zhou Iris I   Wang Enfeng E   Cheung Jerry S JS   Lu Dongshuang D   Ji Yang Y   Zhang Xiaoan X   Fulci Giulia G   Sun Phillip Zhe PZ  

Magnetic resonance in medicine 20171013 6


<h4>Purpose</h4>Chemical exchange saturation transfer (CEST) MRI has shown promise in tissue characterization in diseases like stroke and tumor. However, in vivo CEST imaging such as amide proton transfer (APT) MRI is challenging because of concomitant factors such as direct water saturation, macromolecular magnetization transfer, and nuclear overhauser effect (NOE), which lead to a complex contrast in the commonly used asymmetry analysis (MTRasym). Here, we propose a direct saturation-corrected  ...[more]

Similar Datasets

| S-EPMC6422734 | biostudies-literature
| S-EPMC5490367 | biostudies-literature
| S-EPMC5723528 | biostudies-literature
| S-EPMC9314583 | biostudies-literature
| S-EPMC8489465 | biostudies-literature
| S-EPMC4303585 | biostudies-other
| S-EPMC8640991 | biostudies-literature
| S-EPMC4881971 | biostudies-literature
| S-EPMC7317383 | biostudies-literature
| S-EPMC6592698 | biostudies-literature