ABSTRACT: We aimed to assess the utility of a novel, noninvasive method of detecting genomic alterations in patients with gastrointestinal malignancies, i.e., the use of liquid biopsies to obtain blood-derived circulating tumor DNA (ctDNA) through an analysis of the genomic landscape of ctDNA (68 genes) from 213 patients with advanced gastrointestinal cancers. The most common cancer types were colorectal adenocarcinoma (N = 55; 26%), appendiceal adenocarcinoma (N = 46; 22%), hepatocellular carcinoma (N = 31; 15%), and pancreatic ductal adenocarcinoma (N = 25; 12%). The majority of patients (58%) had ?1 characterized alteration (excluded variants of unknown significance). The median number of characterized alterations was 1 (range, 0-13). The number of detected alterations per patient varied between different cancer types: in hepatocellular carcinoma, 74% of patients (23/31) had ?1 characterized alteration(s) versus 24% of appendiceal adenocarcinoma patients (11/46). The median percent ctDNA among characterized alterations was 2.50% (interquartile range, 0.76%-8.96%). Overall, 95% of patients (117/123) had distinct molecular portfolios with 143 unique characterized alterations within 56 genes. Overall, concordance rates of 96%, 94%, 95%, and 91%, respectively, were found between ctDNA and tissue biopsy (N = 105 patients) in the four most common alterations (KRAS amplification, MYC amplification, KRAS G12V, and EGFR amplification). Of 123 patients with characterized alterations, >99% (122/123; 57% of entire population tested; 122/213) had one or more alterations potentially actionable by experimental or approved drugs. These observations suggest that many patients with gastrointestinal tumors, including difficult-to-biopsy malignancies like hepatocellular cancers, frequently have discernible and theoretically pharmacologically tractable ctDNA alterations that merit further studies in prospective trials. Mol Cancer Ther; 17(1); 297-305. ©2017 AACR.