Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population.
Ontology highlight
ABSTRACT: Schizophrenia (SZ) is a complex polygenic psychiatric disorder caused in part by abnormal dopamine levels. Cerebral dopamine neurotrophic factor (CDNF) 2 is known to protect and repair the dopaminergic system. Dopamine dysfunction is one of the pathogenesis of SZ. However, the relationship between CDNF2 and SZ has not been previously investigated. We speculated that CDNF2 may be a susceptibility factor for SZ.To address this issue, we carried out a study to investigate the association between CDNF2 and SZ in the total sample 1371 (670 SZ patients and 701 healthy controls) Han Chinese population. Stage 1 included 528 SZ patients and 528 healthy controls; and stage 2 included 142 SZ patients and 173 healthy controls. The allele and genotype frequencies of five single nucleotide polymorphisms (rs2577074, rs2577075, rs2249810, rs6506891, and rs2118343) of CDNF2 were compared between patients and controls.We found a significant association in allele and genotype frequencies between the two groups at rs2249810 (?2 = 4.38 and 6.45, respectively; P = 0.03 and 0.04, respectively). An association was also observed in males at rs2249810 (?2 = 8.76; P = 0.03). Haplotype TGATC differed between SZ and controls in stage 2 samples (?2 = 6.38; P = 0.01), and rs2118343 genotypes were associated with negative factor scores (F = 4.396; P = 0.01).These results suggest that rs2249810 and haplotype TGATC of CDNF2 are an SZ susceptibility locus and factor, respectively, and that rs2118343 genotypes are associated with negative symptoms of SZ in the Han Chinese population.
Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population.
<h4>Background</h4>Schizophrenia (SZ) is a complex polygenic psychiatric disorder caused in part by abnormal dopamine levels. Cerebral dopamine neurotrophic factor (CDNF) 2 is known to protect and repair the dopaminergic system. Dopamine dysfunction is one of the pathogenesis of SZ. However, the relationship between CDNF2 and SZ has not been previously investigated. We speculated that CDNF2 may be a susceptibility factor for SZ.<h4>Methods</h4>To address this issue, we carried out a study to inv ...[more]
Project description:Cocaine-induced neuroplasticity changes in the mesocorticolimbic dopamine systems are thought to be involved in the pathophysiology of cocaine dependence. Since neurotrophic factors have been observed to prevent/reverse and mimic cocaine-induced neurobiological changes in the brain, related genes are plausible candidates for susceptibility to cocaine dependence. The novel conserved dopamine neurotrophic factor protein (CDNF) promotes the survival, growth, and function of dopamine-specific neurons and is expressed in brain regions that undergo cocaine-induced neuroplasticity. In this study, we hypothesize that polymorphisms in the CDNF gene (CDNF/ARMETL1) contribute to increased risk for cocaine dependence. Cocaine dependent individuals (n=351) and unaffected controls (n=257) of African descent were genotyped for four single nucleotide polymorphisms (SNPs) in the CDNF gene (rs11259365, rs7094179, rs7900873, rs2278871). We observed no significant differences in allele, genotype, or haplotype frequencies between cases and controls for any of the tested SNPs. Our study suggests that there is no association between variants in the CDNF gene and cocaine dependence. However, additional studies using larger sample sizes, comprehensive SNP coverage, and clinically homogenous populations are necessary before confidently excluding CDNF as a significant genetic risk factor for cocaine dependence.
Project description:Cerebral dopamine neurotrophic factor (CDNF), previously known as the conserved dopamine neurotrophic factor, belongs to the evolutionarily conserved CDNF/mesencephalic astrocyte-derived neurotrophic factor MANF family of neurotrophic factors that demonstrate neurotrophic activities in dopaminergic neurons. The function of CDNF during brain ischemia is still not known. MANF is identified as an endoplasmic reticulum (ER) stress protein; however, the role of CDNF in ER stress remains to be fully elucidated. Here, we test the neuroprotective effect of CDNF on middle cerebral artery occlusion (MCAO) rats and neurons and astrocytes treated with oxygen?glucose depletion (OGD). We also investigate the expression of CDNF in cerebral ischemia and in primary neurons treated with ER stress-inducing agents. Our results show that CDNF can significantly reduce infarct volume, reduce apoptotic cells and improve motor function in MCAO rats, while CDNF can increase the cell viability of neurons and astrocytes treated by OGD. The expression of CDNF was upregulated in the peri-infarct tissue at 2 h of ischemia/24 h reperfusion. ER stress inducer can induce CDNF expression in primary cultured neurons. Our data indicate that CDNF has neuroprotective effects on cerebral ischemia and the OGD cell model and the protective mechanism of CDNF may occur through ER stress pathways.
Project description:BackgroundSchizophrenia (SCZ) is a severe mental illness with high heritability. This study aimed to explore the correlation between MAD1L1, TSNARE polymorphisms and SCZ susceptibility.MethodsA total of 493 SCZ patients and 493 healthy controls were included. The genotypes of MAD1L1 and TSNARE polymorphisms were identified by Agena MassARRAY platform. Odds ratio (OR) and 95% confidence intervals (CIs) were tested via logistic regression analysis in multiple genetic models and different subgroups.ResultsWe observed that AG genotype of rs1107592, AG genotype of rs4976976, and CA genotype of rs67756423 decreased the susceptibility to SCZ (p < 0.05). Age stratification analysis showed that the TC genotype of rs12666575, AG genotype of rs1107592, and AG genotype of rs4976976 decreased the risk of SCZ individuals older than 36 years (p < 0.05). In addition, the AG and AA genotype of rs4976976, the CA genotype of rs67756423 were associated with a lower risk of SCZ in males (p < 0.05). In females, the TT genotype of rs12666575 in recessive model, the AG and AA-AG genotype of rs1107592 in heterozygote and dominant model, could reduce the susceptibility to SCZ (p < 0.05). However, no significant association was found after Bonferroni correction.ConclusionsOur results suggest that MAD1L1 and TSNARE genetic polymorphisms exert a protective role in the risk of SCZ. These findings provide evidence that MAD1L1 and TSNARE may serve as potential biomarkers of SCZ. However, a replication experiment in a cohort with large sample size are required to confirm our findings. Trial registration Not applicable.
Project description:Huntington’s disease (HD) is a progressive inherited neurological disease characterized by the degeneration of basal ganglia and the accumulation of mutant huntingtin (mHtt) aggregates in specific brain areas. Currently, there is no treatment for halting the progression of HD. Cerebral dopamine neurotrophic factor (CDNF) is a novel endoplasmic reticulum located protein with neurotrophic factor properties that protects and restores dopamine neurons in rodent and non-human primate models of Parkinson’s disease. Our recent study showed that CDNF improves motor coordination and protects NeuN positive cells in a Quinolinic acid toxin rat model of HD. Here we have investigated the effect of chronic intrastriatal CDNF administration on behavior and mHtt aggregates in the N171-82Q mouse model of HD. Data showed that CDNF did not significantly decrease the number of mHtt aggregates in most brain regions studied. Notably, CDNF significantly delayed the onset of symptoms and improved motor coordination in N171-82Q mice. Furthermore, CDNF increased BDNF mRNA level in hippocampus in vivo in the N171-82Q model and BDNF protein level in cultured striatal neurons. Collectively our results indicate that CDNF might be a potential drug candidate for the treatment of HD.
Project description:CYP2E1 is a member of the cytochrome P450 superfamily, which is involved in the metabolism and activation of both endobiotics and xenobiotics. The genetic polymorphisms of CYP2E1 gene (Chromosome 10q26.3, Accession Number NC_000010.10) are reported to be related to the development of several mental diseases and to be involved in the clinical efficacy of some psychiatric medications. We investigated the possible association of CYP2E1 polymorphisms with susceptibility to schizophrenia in the Chinese Han Population as well as the relationship with response to risperidone in schizophrenia patients.In a case-control study, we identified 11 polymorphisms in the 5' flanking region of CYP2E1 in 228 schizophrenia patients and 384 healthy controls of Chinese Han origin. From among the cases, we chose 130 patients who had undergone 8 weeks of risperidone monotherapy to examine the relationship between their response to risperidone and CYP2E1 polymorphisms. Clinical efficacy was assessed using the Brief Psychiatric Rating Scale (BPRS).Statistically significant differences in allele or genotype frequencies were found between cases and controls at rs8192766 (genotype p?=?0.0048, permutation p?=?0.0483) and rs2070673 (allele: p?=?0.0018, permutation p?=?0.0199, OR?=?1.4528 95%CI?=?1.1487-1.8374; genotype: p?=?0.0020, permutation p?=?0.0225). In addition, a GTCAC haplotype containing 5 SNPs (rs3813867, rs2031920, rs2031921, rs3813870 and rs2031922) was observed to be significantly associated with schizophrenia (p?=?7.47E-12, permutation p<0.0001). However, no association was found between CYP2E1 polymorphisms/haplotypes and risperidone response.Our results suggest that CYP2E1 may be a potential risk gene for schizophrenia in the Chinese Han population. However, polymorphisms of the CYP2E1 gene may not contribute significantly to individual differences in the therapeutic efficacy of risperidone. Further studies in larger groups are warranted to confirm our results.
Project description:Endothelial NOS (NOS3) has a potential role in the prevention of neuronal injury in hypoxic-ischemic encephalopathy (HIE). Thus, we aimed to explore the association between NOS3 gene polymorphisms and HIE susceptibility and symptoms in a Chinese Han population. Three single nucleotide polymorphisms (SNPs) in the NOS3 gene, rs1800783, rs1800779, and rs2070744, were detected in 226 children with HIE and 212 healthy children in a Chinese Han population. Apgar scores and magnetic resonance image scans were used to estimate the symptoms and brain damage. The association analyses were conducted by using SNPStats and SPSS 18.0 software. The genotype and allele distributions of rs1800779 and rs1799983 displayed no significant differences between the patients and the controls, while the rs2070744 allele distribution was significantly different (corrected P = 0.009). For clinical characteristics, the rs2070744 genotype distribution was significantly different in patients with different Apgar scores (?5, TT/TC/CC = 6/7/5; 6~7, TT/TC/CC = 17/0/0; 8~9, TT/TC/CC = 6/2/0; 10, TT/TC/CC = 7/1/0; corrected P = 0.006) in the 1001 to 1449?g birth weight subgroup. The haplotype test did not show any associations with the risk and clinical characteristics of HIE. The results suggest that NOS3 gene SNP rs2070744 was significantly associated with HIE susceptibility and symptom expression in Chinese Han population.
Project description:Objective:Schizophrenia (SZ) is a common and complex psychiatric disorder that has a significant genetic component. The glutamate hypothesis describes one possible pathogenesis of SZ. The solute carrier family 1 gene (SLC1A1) is one of several genes thought to play a critical role in regulating the glutamatergic system and is strongly implicated in the pathophysiology of SZ. In this study, we identify polymorphisms of the SLC1A1 gene that may confer susceptibility to SZ in the Han Chinese population. Methods:We genotyped 36 single-nucleotide polymorphisms (SNPs) using Illumina GoldenGate assays on a BeadStation 500G Genotyping System in 528 paranoid SZ patients and 528 healthy controls. Psychopathology was rated by the Positive and Negative Symptom Scale. Results:Significant associations were found in genotype and allele frequencies for SNPs rs10815017 (p = 0.002, 0.030, respectively) and rs2026828 (p = 0.020, 0.005, respectively) between SZ and healthy controls. There were significant associations in genotype frequency at rs6476875 (p = 0.020) and rs7024664 (p = 0.021) and allele frequency at rs3780412 (p = 0.026) and rs10974573 (p = 0.047) between SZ and healthy controls. Meanwhile, significant differences were found in genotype frequency at rs10815017 (p = 0.015), rs2026828 (p = 0.011), and rs3780411 (p = 0.040) in males, and rs7021569 in females (p = 0.020) between cases and controls when subdivided by gender. Also, significant differences were found in allele frequency at rs2026828 (p = 0.003), and rs7021569 (p = 0.045) in males, and rs10974619 in females (p = 0.044). However, those associations disappeared after Bonferroni's correction (p's > 0.05). Significant associations were found in the frequencies of four haplotypes (AA, CA, AGA, and GG) between SZ and healthy controls (? 2 = 3.974, 7.433, 4.699, 4.526, p = 0.046, 0.006, 0.030, 0.033, respectively). There were significant associations between rs7032326 genotypes and PANSS total, positive symptoms, negative symptoms, and general psychopathology in SZ (p = 0.002, 0.011, 0.028, 0.008, respectively). Conclusion:The present study provides further evidence that SLC1A1 may be not a susceptibility gene for SZ. However, the genetic variations of SLC1A1 may affect psychopathology symptoms.
Project description:BackgroundThe expression of μ-opioid receptor has important role in cognitive dysfunction in Schizophrenia (SZ). The results of studies about the association of polymorphisms of μ-opioid receptor gene (OPRM1) with SZ were inconsistent.MethodsWe conducted a case-control study to investigate the genetic association between OPRM1 polymorphisms and SZ among the Han chinese population. 264 SZ patients and 264 age-matched control subjects were recruited. Four SNPs of OPRM1 were successfully genotyped by using PCR-RFLP.ResultsOf four polymorphisms, rs1799971 and rs2075572 were shown to associate with SZ. Compared with the A allele of rs1799971 and C allele of rs2075572, the G allele of rs1799971 and rs2075572 was associated with an almost 0.46-fold risk (OR=0.46, 95% CI: 0.357-0.59, P<0.01) and 0.7-fold risk (OR=0.707, 95% CI: 0.534-0.937, P=0.015) of the occurrence of SZ,. When subjects were divided by gender, rs1799971 remained significant difference only in males (OR=0.309, 95% CI: 0.218-0.439 for G allele, P<0.01), and rs2075572 only in females (OR=0.399, 95% CI: 0.246-0.648 for G allele, P<0.01). In secondary analysis with subsets of patients, the G allele of rs1799971 (compared to the A allele) was associated with a decreased risk of all patients and male patients with apathy symptoms (OR=0.086, 95% CI: 0.048-0.151, P=0.01; OR=0.083, 95% CI: 0.045-0.153, P<0.01), and the G allele of rs2075572 (compared to the C allele) was associated with a decreased risk of all patients and female patients with positive family history (OR=0.468, 95% CI: 0.309-0.71, P<0.01; OR=0.34, 95% CI: 0.195-0.593, P<0.01). In addition, haplotype analysis revealed that two SNP haplotypes (A-C-C-G and G-C-C-A) were associated with decreased risks of SZ (P<0.01). The other two (G-C-C-G and G-G-C-G) with increased risks of SZ (P<0.01).ConclusionsThe present study demonstrated for the first time that the OPRM1 polymorphism may be a risk factor for schizophrenia in the Han Chinese. Further studies are needed to give a global view of this polymorphism in pathogenesis of schizophrenia in a large-scale sample, family-based association design or well-defined subgroups of schizophrenia.
Project description:Numerous developmental genes have been linked to schizophrenia (SZ) by case-control and genome-wide association studies, suggesting that neurodevelopmental disturbances are major pathogenic mechanisms. However, no neurodevelopmental deficit has been definitively linked to SZ occurrence, likely due to disease heterogeneity and the differential effects of various gene variants across ethnicities. Hence, it is critical to examine linkages in specific ethnic populations, such as Han Chinese. The newly identified RhoGAP ARHGAP18 is likely involved in neurodevelopment through regulation of RhoA/C. Here we describe four single nucleotide polymorphisms (SNPs) in ARHGAP18 associated with SZ across a cohort of >2000 cases and controls from the Han population. Two SNPs, rs7758025 and rs9483050, displayed significant differences between case and control groups both in genotype (P = 0.0002 and P = 7.54×10-6) and allelic frequencies (P = 4.36×10-5 and P = 5.98×10-7), respectively. The AG haplotype in rs7758025-rs9385502 was strongly associated with the occurrence of SZ (P = 0.0012, OR = 0.67, 95% CI = 0.48-0.93), an association that still held following a 1000-times random permutation test (P = 0.022). In an independently collected validation cohort, rs9483050 was the SNP most strongly associated with SZ. In addition, the allelic frequencies of rs12197901 remained associated with SZ in the combined cohort (P = 0.021), although not in the validation cohort alone (P = 0.251). Collectively, our data suggest the ARHGAP18 may confer vulnerability to SZ in the Chinese Han population, providing additional evidence for the involvement of neurodevelopmental dysfunction in the pathogenesis of schizophrenia.
Project description:Schizophrenia (SZ) is a common and complex psychiatric disorder that has a significant genetic component. The glutamatergic system is the major excitatory neurotransmitter system in the central nervous system, and is mediated by N-methyl-D-aspartate (NMDA) receptors. Disturbances in this system have been hypothesized to play a major role in SZ pathogenesis. Several studies have revealed that the NMDA receptor subunit 2B (GRIN2B) potentially associates with SZ and its psychiatric symptoms. In this study, we performed a case-control study to identify polymorphisms of the GRIN2B gene that may confer susceptibility to SZ in the Han Chinese population. Thirty-four single nucleotide polymorphisms (SNPs) were genotyped in 528 paranoid SZ patients and 528 control subjects. A significant association was observed in allele and genotype between SZ and controls at rs2098469 (χ2 = 8.425 and 4.994; p = 0.025 and 0.014, respectively). Significant associations were found in the allele at rs12319804 (χ2 = 4.436; p = 0.035), as well as in the genotype at rs12820037 and rs7298664 between SZ and controls (χ2 = 11.162 and 38.204; p = 0.003 and 4.27×10(-8), respectively). After applying the Bonferroni correction, rs7298664 still had significant genotype associations with SZ (p = 1.71×10(-7)). In addition, rs2098469 genotype and allele frequencies, and 12820037 allele frequencies were nominally associated with SZ. Three haplotypes, CGA (rs10845849-rs12319804-rs10845851), CC (rs12582848-rs7952915), and AAGAC (rs2041986-rs11055665-rs7314376-rs7297101-rs2098469), had significant differences between SZ and controls (χ2 = 4.324, 4.582, and 4.492; p = 0.037, 0.032, and 0.034, respectively). In addition, three SNPs, rs2098469, rs12820037, and rs7298664, were significantly associated with cognition factors PANSS subscores in SZ (F = 16.799, 7.112, and 13.357; p = 0.000, 0.017, and 0.000, respectively). In conclusion, our study provides novel evidence for an association between GRIN2B polymorphisms and SZ susceptibility and symptoms in the Han Chinese population.