Unknown

Dataset Information

0

Myoglobin and ?-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS.


ABSTRACT: Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins ?-Lactalbumin (?LA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between ?LA and the chemical surfactant sodium dodecyl sulfate (SDS) were also investigated. The SAXS data for pure RL micelles can be described by prolate core-shell structures with a core radius of 7.7 Å and a shell thickness of 12 Å, giving an aggregation number of 11. The small core radius is attributed to RL's complex hydrophobic tail. Data for the ?LA-RL complex agree with a 12-molecule micelle with a single protein molecule in the shell. For Mb-RL, the analysis gives complexes of two connected micelles, each containing 10 RL and one protein in the shells. ?LA-RL and Mb-RL form surfactant-saturated complexes above 5.6 and 4.7 mM RL, respectively, leaving the remaining RL in free micelles. The SAXS data for SDS agree with oblate-shaped micelles with a core of 20 Å, core eccentricity 0.7, and shell thickness of 5.45 Å, with an aggregation number of 74. The ?LA-SDS complexes contain a prolate micelle with a core radius of 11-14 Å and a shell of 8-12 Å with up to 3 ?LA per particle and up to 43 SDS per ?LA, both considerably larger than for RL. Unlike the RL-protein complexes, the number of surfactant molecules in ?LA-SDS complexes increases with surfactant concentration, and saturate at higher surfactant concentrations than ?LA-RL complexes. The results highlight how RL and SDS follow similar overall rules of self-assembly and interactions with proteins, but that differences in the strength of protein-surfactant interactions affect the formed structures.

SUBMITTER: Mortensen HG 

PROVIDER: S-EPMC5770973 | biostudies-literature | 2017 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS.

Mortensen Henriette Gavlshøj HG   Madsen Jens Kvist JK   Andersen Kell K KK   Vosegaard Thomas T   Deen G Roshan GR   Otzen Daniel E DE   Pedersen Jan Skov JS  

Biophysical journal 20171201 12


Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins α-Lactalbumin (αLA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between αLA and the chemical surfactant sodium  ...[more]

Similar Datasets

| S-EPMC41530 | biostudies-other
| S-EPMC7864340 | biostudies-literature
| S-EPMC92350 | biostudies-literature
| S-EPMC205310 | biostudies-other
| S-EPMC6995601 | biostudies-literature
| S-EPMC7366515 | biostudies-literature
| S-EPMC7565966 | biostudies-literature
| S-EPMC5607479 | biostudies-literature
| S-EPMC5030215 | biostudies-literature
| S-EPMC9396382 | biostudies-literature