Unknown

Dataset Information

0

Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.


ABSTRACT: We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT) and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN) assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

SUBMITTER: Ghandhi SA 

PROVIDER: S-EPMC5774773 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

Ghandhi Shanaz A SA   Turner Helen C HC   Shuryak Igor I   Dugan Gregory O GO   Bourland J Daniel JD   Olson John D JD   Tooze Janet A JA   Morton Shad R SR   Batinic-Haberle Ines I   Cline J Mark JM   Amundson Sally A SA  

PloS one 20180119 1


We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and pl  ...[more]

Similar Datasets

2018-01-01 | GSE84898 | GEO
| S-EPMC5355888 | biostudies-literature
| S-EPMC6811594 | biostudies-literature
| S-EPMC8468747 | biostudies-literature
| S-EPMC6483900 | biostudies-literature
| S-EPMC3632095 | biostudies-literature
| S-EPMC5874526 | biostudies-literature
| S-EPMC1613229 | biostudies-literature
2017-04-25 | GSE86567 | GEO
| S-EPMC2854042 | biostudies-literature