Multi-color RGB marking enables clonality assessment of liver tumors in a murine xenograft model.
Ontology highlight
ABSTRACT: We recently introduced red-green-blue (RGB) marking for clonal cell tracking based on individual color-coding. Here, we applied RGB marking to study clonal development of liver tumors. Immortalized, non-tumorigenic human fetal hepatocytes expressing the human telomerase reverse transcriptase (FH-hTERT) were RGB-marked by simultaneous transduction with lentiviral vectors encoding mCherry, Venus, and Cerulean. Multi-color fluorescence microscopy was used to analyze growth characteristics of RGB-marked FH-hTERT in vitro and in vivo after transplantation into livers of immunodeficient mice with endogenous liver damage (uPA/SCID). After initially polyclonal engraftment we observed oligoclonal regenerative nodules derived from transplanted RGB-marked FH-hTERT. Some mice developed monochromatic invasive liver tumors; their clonal origin was confirmed both on the molecular level, based on specific lentiviral-vector insertion sites, and by serial transplantation of one tumor. Vector insertions in proximity to the proto-oncogene MCF2 and the transcription factor MITF resulted in strong upregulation of mRNA expression in the respective tumors. Notably, upregulated MCF2 and MITF expression was also observed in 21% and 33% of 24 human hepatocellular carcinomas analyzed. In conclusion, liver repopulation with RGB-marked FH-hTERT is a useful tool to study clonal progression of liver tumors caused by insertional mutagenesis in vivo and will help identifying genes involved in liver cancer.
SUBMITTER: Thomaschewski M
PROVIDER: S-EPMC5777795 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA