Unknown

Dataset Information

0

Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system.


ABSTRACT: In this study, chitosan-alginate polyelectrolyte microparticles containing the antibiotic, vancomycin chloride were prepared using the ionotropic gelation (coacervation) technique. In vitro release and drug transport mechanisms were studied concerning the chitosan only and alginate only microparticles as a control group. Further, the effect of porosity on the drug transport mechanism was also studied for chitosan-alginate mixed particles produced by lyophilizing in contrast to the air-dried non-porous particles. According to the in vitro release data, alginate only and chitosan only microparticles showed burst release and prolonged release respectively. Chitosan-alginate lyophilized microparticles showed the best-controlled release of vancomycin with the average release of 22?g per day for 14days. Also, when increasing alginate concentration there was no increase in the release rate of vancomycin. The release data of all the microparticles were treated with Ritger-Peppas, Higuchi, Peppas-Sahlin, zero-order, and first-order kinetic models. The best fit was observed with Peppas-Sahlin model, indicating the drug transport mechanism was controlled by both Fickian diffusion and case II relaxations. Also, Fickian diffusion dominates the drug transport mechanism of all air-dried samples during the study period. However, the Fickian contribution was gradually reducing with time. Porosity significantly effects the drug transport mechanism as case II relaxation dominates after day 10 of the lyophilized microparticles.

SUBMITTER: Unagolla JM 

PROVIDER: S-EPMC5805659 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system.

Unagolla Janitha M JM   Jayasuriya Ambalangodage C AC  

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 20171218


In this study, chitosan-alginate polyelectrolyte microparticles containing the antibiotic, vancomycin chloride were prepared using the ionotropic gelation (coacervation) technique. In vitro release and drug transport mechanisms were studied concerning the chitosan only and alginate only microparticles as a control group. Further, the effect of porosity on the drug transport mechanism was also studied for chitosan-alginate mixed particles produced by lyophilizing in contrast to the air-dried non-  ...[more]

Similar Datasets

| S-EPMC8308421 | biostudies-literature
| S-EPMC5025818 | biostudies-literature
| S-EPMC7284795 | biostudies-literature
| S-EPMC7886053 | biostudies-literature
| S-EPMC9315676 | biostudies-literature
| S-EPMC7077406 | biostudies-literature
| S-EPMC7433903 | biostudies-literature
| S-EPMC6722511 | biostudies-literature
| S-EPMC4308987 | biostudies-literature
| S-EPMC9811367 | biostudies-literature