Interaction between polymorphisms in aspirin metabolic pathways, regular aspirin use and colorectal cancer risk: A case-control study in unselected white European populations.
Ontology highlight
ABSTRACT: Regular aspirin use is associated with reduced risk of colorectal cancer (CRC). Variation in aspirin's chemoprevention efficacy has been attributed to the presence of single nucleotide polymorphisms (SNPs). We conducted a meta-analysis using two large population-based case-control datasets, the UK-Leeds Colorectal Cancer Study Group and the NIH-Colon Cancer Family Registry, having a combined total of 3325 cases and 2262 controls. The aim was to assess 42 candidate SNPs in 15 genes whose association with colorectal cancer risk was putatively modified by aspirin use, in the literature. Log odds ratios (ORs) and standard errors were estimated for each dataset separately using logistic regression adjusting for age, sex and study site, and dataset-specific results were combined using random effects meta-analysis. Meta-analysis showed association between SNPs rs6983267, rs11694911 and rs2302615 with CRC risk reduction (All P<0.05). Association for SNP rs6983267 in the CCAT2 gene only was noteworthy after multiple test correction (P = 0.001). Site-specific analysis showed association between SNPs rs1799853 and rs2302615 with reduced colon cancer risk only (P = 0.01 and P = 0.004, respectively), however neither reached significance threshold following multiple test correction. Meta-analysis of SNPs rs2070959 and rs1105879 in UGT1A6 gene showed interaction between aspirin use and CRC risk (Pinteraction = 0.01 and 0.02, respectively); stratification by aspirin use showed an association for decreased CRC risk for aspirin users having a wild-type genotype (rs2070959 OR = 0.77, 95% CI = 0.68-0.86; rs1105879 OR = 0.77 95% CI = 0.69-0.86) compared to variant allele cariers. The direction of the interaction however is in contrast to that published in studies on colorectal adenomas. Both SNPs showed potential site-specific interaction with aspirin use and colon cancer risk only (Pinteraction = 0.006 and 0.008, respectively), with the direction of association similar to that observed for CRC. Additionally, they showed interaction between any non-steroidal anti-inflammatory drugs (including aspirin) use and CRC risk (Pinteraction = 0.01 for both). All gene x environment (GxE) interactions however were not significant after multiple test correction. Candidate gene investigation indicated no evidence of GxE interaction between genetic variants in genes involved in aspirin pathways, regular aspirin use and colorectal cancer risk.
SUBMITTER: Sheth H
PROVIDER: S-EPMC5806861 | biostudies-literature | 2018
REPOSITORIES: biostudies-literature
ACCESS DATA