Unknown

Dataset Information

0

Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity.


ABSTRACT: Nervous systems display intriguing patterns of sexual dimorphisms across the animal kingdom, but the mechanisms that generate such dimorphisms remain poorly characterized. In the nematode Caenorhabditis elegans, a number of neurons present in both sexes are synaptically connected to one another in a sexually dimorphic manner as a result of sex-specific synaptic pruning and maintenance [1-3]. We define here a mechanism for the male-specific maintenance of the synaptic connections of the phasmid sensory neuron PHB and its male-specific target, the sex-shared AVG interneuron. We show that the C. elegans Netrin ortholog UNC-6, signaling through its cognate receptor UNC-40/DCC and the CED-5/DOCK180 guanine nucleotide exchange factor, is both required and sufficient for male-specific synaptic maintenance. The dimorphism of unc-6 activity is brought about by sex-specific regulation of unc-6 transcription. Although unc-6 is transcribed in the AVG neuron of males and hermaphrodites during juvenile stages, unc-6 expression is downregulated in AVG in hermaphrodites during sexual maturation but is maintained during sexual maturation of males. unc-6 downregulation in hermaphrodites is conferred by the master regulator of hermaphrodite sexual identity, the Gli/CI homolog TRA-1, which antagonizes the non-sex-specific function of the LIM homeobox gene lin-11, a terminal selector and activator of unc-6 in AVG. Preventing the downregulation of unc-6 in AVG of hermaphrodites through ectopic expression of unc-6 in transgenic animals results in the maintenance of the PHB>AVG synapses in hermaphrodites. Taken together, intersectional transcriptional regulation of unc-6/Netrin is required and sufficient to cell autonomously pattern sexually dimorphic synapses.

SUBMITTER: Weinberg P 

PROVIDER: S-EPMC5820123 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity.

Weinberg Peter P   Berkseth Matthew M   Zarkower David D   Hobert Oliver O  

Current biology : CB 20180208 4


Nervous systems display intriguing patterns of sexual dimorphisms across the animal kingdom, but the mechanisms that generate such dimorphisms remain poorly characterized. In the nematode Caenorhabditis elegans, a number of neurons present in both sexes are synaptically connected to one another in a sexually dimorphic manner as a result of sex-specific synaptic pruning and maintenance [1-3]. We define here a mechanism for the male-specific maintenance of the synaptic connections of the phasmid s  ...[more]

Similar Datasets

| S-EPMC7658809 | biostudies-literature
| S-EPMC7538159 | biostudies-literature
| S-EPMC3131337 | biostudies-literature
| S-EPMC2292836 | biostudies-literature
| S-EPMC9385264 | biostudies-literature
| S-EPMC11017545 | biostudies-literature
2022-07-14 | GSE191296 | GEO
| S-EPMC5968453 | biostudies-literature
| S-EPMC2998557 | biostudies-literature
| S-EPMC8220260 | biostudies-literature