Unknown

Dataset Information

0

On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke.


ABSTRACT: Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE microstructural descriptors derived from diffusion MRI (dMRI) in revealing white matter (WM) plasticity. In this work, we focused on the main open issues left: (1) the comparative analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA) and Mean Diffusivity (MD); and (2) the ability to detect plasticity processes in gray matter (GM). Although signal modeling in GM is still largely unexplored, we investigated their sensibility to stroke-induced microstructural modifications occurring in the contralateral hemisphere. A more complete picture could provide hints for investigating the interplay of GM and WM modulations. Ten stroke patients and ten age/gender-matched healthy controls were enrolled in the study and underwent diffusion spectrum imaging (DSI). Acquisitions at three and two time points (tp) were performed on patients and controls, respectively. For all subjects and acquisitions, FA and MD were computed along with 3D-SHORE-based indices [Generalized Fractional Anisotropy (GFA), Propagator Anisotropy (PA), Return To the Axis Probability (RTAP), Return To the Plane Probability (RTPP), and Mean Square Displacement (MSD)]. Tract-based analysis involving the cortical, subcortical and transcallosal motor networks and region-based analysis in GM were successively performed, focusing on the contralateral hemisphere to the stroke. Reproducibility of all the indices on both WM and GM was quantitatively proved on controls. For tract-based, longitudinal group analyses revealed the highest significant differences across the subcortical and transcallosal networks for all the indices. The optimal regression model for predicting the clinical motor outcome at tp3 included GFA, PA, RTPP, and MSD in the subcortical network in combination with the main clinical information at baseline. Region-based analysis in the contralateral GM highlighted the ability of anisotropy indices in discriminating between groups mainly at tp1, while diffusivity indices appeared to be altered at tp2. 3D-SHORE indices proved to be suitable in probing plasticity in both WM and GM, further confirming their viability as a novel family of biomarkers in ischemic stroke in WM and revealing their potential exploitability in GM. Their combination with tensor-derived indices can provide more detailed insights of the different tissue modulations related to stroke pathology.

SUBMITTER: Boscolo Galazzo I 

PROVIDER: S-EPMC5826355 | biostudies-literature | 2018

REPOSITORIES: biostudies-literature

altmetric image

Publications

On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke.

Boscolo Galazzo Ilaria I   Brusini Lorenza L   Obertino Silvia S   Zucchelli Mauro M   Granziera Cristina C   Menegaz Gloria G  

Frontiers in neuroscience 20180221


Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE microstructural descriptors derived from diffusion MRI (dMRI) in revealing white matter (WM) plasticity. In this work, we focused on the main open issues left: (1) the comparative analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA) and Mean Diffusivity (MD); and (2) the ability to detect plasticity processes in gray matter (GM). Although signal modeling in GM is still largely  ...[more]

Similar Datasets

| S-EPMC6387951 | biostudies-literature
| S-EPMC6771666 | biostudies-literature
| S-EPMC10208402 | biostudies-literature
| S-EPMC8445077 | biostudies-literature
| S-EPMC2851294 | biostudies-literature
| S-EPMC4987060 | biostudies-literature
| S-EPMC3250275 | biostudies-other
| S-EPMC4200592 | biostudies-literature
| S-EPMC7613101 | biostudies-literature
| S-EPMC10559725 | biostudies-literature