Unknown

Dataset Information

0

Geometrical control of dissipation during the spreading of liquids on soft solids.


ABSTRACT: Gel layers bound to a rigid substrate are used in cell culture to control differentiation and migration and to lower the friction and tailor the wetting of solids. Their thickness, often considered a negligible parameter, affects cell mechanosensing or the shape of sessile droplets. Here, we show that the adjustment of coating thickness provides control over energy dissipation during the spreading of flowing matter on a gel layer. We combine experiments and theory to provide an analytical description of both the statics and the dynamics of the contact line between the gel, the liquid, and the surrounding atmosphere. We extract from this analysis a hitherto-unknown scaling law that predicts the dynamic contact angle between the three phases as a function of the properties of the coating and the velocity of the contact line. Finally, we show that droplets moving on vertical substrates coated with gel layers having linear thickness gradients drift toward regions of higher energy dissipation. Thus, thickness control opens the opportunity to design a priori the path followed by large droplets moving on gel-coated substrates. Our study shows that thickness is another parameter, besides surface energy and substrate mechanics, to tune the dynamics of liquid spreading and wetting on a compliant coating, with potential applications in dew collection and free-surface flow control.

SUBMITTER: Zhao M 

PROVIDER: S-EPMC5828581 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Geometrical control of dissipation during the spreading of liquids on soft solids.

Zhao Menghua M   Dervaux Julien J   Narita Tetsuharu T   Lequeux François F   Limat Laurent L   Roché Matthieu M  

Proceedings of the National Academy of Sciences of the United States of America 20180205 8


Gel layers bound to a rigid substrate are used in cell culture to control differentiation and migration and to lower the friction and tailor the wetting of solids. Their thickness, often considered a negligible parameter, affects cell mechanosensing or the shape of sessile droplets. Here, we show that the adjustment of coating thickness provides control over energy dissipation during the spreading of flowing matter on a gel layer. We combine experiments and theory to provide an analytical descri  ...[more]

Similar Datasets

| S-EPMC5492258 | biostudies-other
| S-EPMC10514051 | biostudies-literature
| S-EPMC4628880 | biostudies-literature
| S-EPMC6748918 | biostudies-literature
| S-EPMC5482056 | biostudies-literature
| S-EPMC6485342 | biostudies-literature
| S-EPMC5799209 | biostudies-literature
| S-EPMC8916726 | biostudies-literature
| S-EPMC7101206 | biostudies-literature
| S-EPMC10232046 | biostudies-literature