Unknown

Dataset Information

0

Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in Saccharomyces cerevisiae.


ABSTRACT: A variety of metabolic deficiencies and human diseases arise from the disruption of mitochondrial enzymes and/or loss of mitochondrial DNA. Mounting evidence shows that eukaryotes have conserved enzymes that prevent the accumulation of reactive metabolites that cause stress inside the mitochondrion. 2-Aminoacrylate is a reactive enamine generated by pyridoxal 5'-phosphate-dependent ?,?-eliminases as an obligatory intermediate in the breakdown of serine. In prokaryotes, members of the broadly conserved RidA family (PF14588) prevent metabolic stress by deaminating 2-aminoacrylate to pyruvate. Here, we demonstrate that unmanaged 2-aminoacrylate accumulation in Saccharomyces cerevisiae mitochondria causes transient metabolic stress and the irreversible loss of mitochondrial DNA. The RidA family protein Mmf1p deaminates 2-aminoacrylate, preempting metabolic stress and loss of the mitochondrial genome. Disruption of the mitochondrial pyridoxal 5'-phosphate-dependent serine dehydratases (Ilv1p and Cha1p) prevents 2-aminoacrylate formation, avoiding stress in the absence of Mmf1p. Furthermore, chelation of iron in the growth medium improves maintenance of the mitochondrial genome in yeast challenged with 2-aminoacrylate, suggesting that 2-aminoacrylate-dependent loss of mitochondrial DNA is influenced by disruption of iron homeostasis. Taken together, the data indicate that Mmf1p indirectly contributes to mitochondrial DNA maintenance by preventing 2-aminoacrylate stress derived from mitochondrial amino acid metabolism.IMPORTANCE Deleterious reactive metabolites are produced as a consequence of many intracellular biochemical transformations. Importantly, reactive metabolites that appear short-lived in vitro have the potential to persist within intracellular environments, leading to pervasive cell damage and diminished fitness. To overcome metabolite damage, organisms utilize enzymatic reactive-metabolite defense systems to rid the cell of deleterious metabolites. In this report, we describe the importance of the RidA/YER057c/UK114 enamine/imine deaminase family in preventing 2-aminoacrylate stress in yeast. Saccharomyces cerevisiae lacking the enamine/imine deaminase Mmf1p was shown to experience pleiotropic growth defects and fails to maintain its mitochondrial genome. Our results provide the first line of evidence that uncontrolled 2-aminoacrylate stress derived from mitochondrial serine metabolism can negatively impact mitochondrial DNA maintenance in eukaryotes.

SUBMITTER: Ernst DC 

PROVIDER: S-EPMC5829821 | biostudies-literature | 2018 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mmf1p Couples Amino Acid Metabolism to Mitochondrial DNA Maintenance in <i>Saccharomyces cerevisiae</i>.

Ernst Dustin C DC   Downs Diana M DM  

mBio 20180227 1


A variety of metabolic deficiencies and human diseases arise from the disruption of mitochondrial enzymes and/or loss of mitochondrial DNA. Mounting evidence shows that eukaryotes have conserved enzymes that prevent the accumulation of reactive metabolites that cause stress inside the mitochondrion. 2-Aminoacrylate is a reactive enamine generated by pyridoxal 5'-phosphate-dependent α,β-eliminases as an obligatory intermediate in the breakdown of serine. In prokaryotes, members of the broadly con  ...[more]

Similar Datasets

| S-EPMC85362 | biostudies-literature
| S-EPMC6972574 | biostudies-literature
| S-EPMC7405077 | biostudies-literature
| S-EPMC2921344 | biostudies-literature
| S-EPMC1595348 | biostudies-literature
| S-EPMC3050842 | biostudies-literature
| S-EPMC6127893 | biostudies-literature
| S-EPMC6245637 | biostudies-literature
| S-EPMC4019496 | biostudies-literature
| S-SCDT-EMM-2017-08550 | biostudies-other