Project description:Here we report a green and facile route for highly efficient reduction of free-standing graphene oxide (GO) papers with metal iodide aqueous solutions at low cost. The metal iodides (MgI2, AlI3, ZnI2, FeI2) were synthesized directly from metal and iodine powder with water as a catalyzer. An extremely high bulk conductivity of 55088 S/m for reduced graphene oxide (rGO) papers were obtained with FeI2 solution of which pH = 0 at 95°C for 6 hours. The catalytic effect of strong Lewis acid for the promotion of the nucleophilic substitution reaction is responsible for the greatly improved bulk conductivity. Furthermore, it was found that the layer-to-layer distance (dL) and the crystallinity of the rGO papers are regarded as two main factors affecting the bulk conductivity rather than C/O ratio and defect concentration.
Project description:Hybrid nanomaterials fabricated by the heterogeneous integration of 1D (carbon nanotubes) and 2D (graphene oxide) nanomaterials showed synergy in electrical and mechanical properties. Here, we reported the infiltration of carboxylic functionalized single-walled carbon nanotubes (C-SWNT) into free-standing graphene oxide (GO) paper for better electrical and mechanical properties than native GO. The stacking arrangement of GO sheets and its alteration in the presence of C-SWNT were comprehensively explored through scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The C-SWNTs bridges between different GO sheets produce a pathway for the flow of electrical charges and provide a tougher hybrid system. The nanoscopic surface potential map reveals a higher work function of the individual functionalised SWNTs than surrounded GO sheets showing efficient charge exchange. We observed the enhanced conductivity up to 50 times and capacitance up to 3.5 times of the hybrid structure than the GO-paper. The laminate of polystyrene composites provided higher elastic modulus and mechanical strength when hybrid paper is used, thus paving the way for the exploitation of hybrid filler formulation in designing polymer composites.
Project description:Carbon fiber papers supported Ag catalysts (Ag/CFP) with different coverage of electro-active site are prepared by electrochemical deposition and used as binder free cathodes in primary aluminum-air (Al-air) battery. Scanning Electron Microscopy and X-ray Diffraction studies are carried out to characterize the as-prepared Ag/CFP air cathodes. Oxygen reduction reaction (ORR) activities on these air cathodes in alkaline solutions are systematic studied. A newly designed aluminum-air cell is used to further determine the cathodes performance under real operation condition and during the test, the Ag/CFP electrodes show outstanding catalytic activity for ORR in concentrated alkaline electrolyte, and no obvious activity degradation is observed after long-time discharge. The electrochemical test results display the dependence of coverage of the electro-active Ag on the catalytic performance of the air cathodes. The resulting primary Al-air battery made from the best-performing cathode shows an impressive discharge peak power density, outperforming that of using commercial nano-manganese catalyst air electrodes.
Project description:Nanoporous metals similar to paper in form are developed using Japanese washi paper as a template to create hierarchical porous electrodes. This method is used to create a trimodal -nanoporous Au electrode, as a well as a hierarchical NiMn electrode that achieves high electrochemical capacitance and a rapid rate of oxygen evolution.
Project description:Publishing medical papers in English is important as English remains the predominant language for most medical papers (both electronic and traditional journal publications). In addition, journals with the highest impact factors are published in English and a publication in English thus enhances the visibility of authors and their institutions, and is important for promotion in some academic centers. This article reviews the basic principles that will help you successfully publish a manuscript in English. Although other books and articles are available on this subject, there are relatively few references. The present article is based on this author's experience of publishing nearly 400 articles in English. It will emphasize writing original articles, but the principles can be applied to virtually any type of manuscript.
Project description:Non-invasive diagnosis on biological liquid samples, such as urine, sweat, saliva, and tears, may allow patients to evaluate their health by themselves. To obtain accurate diagnostic results, target liquid must be precisely sampled. Conventionally, urine sampling using filter paper can be given as an example sampling, but differences in the paper structure can cause variations in sampling volume. This paper describes precise liquid sampling using synthetic microfluidic papers, which are composed of obliquely combined micropillars. Sampling volume accuracy was investigated using different designs and collection methods to determine the optimal design and sample collecting method. The optimized protocol was followed to accurately measure potassium concentration using synthetic microfluidic paper and a commercially available densitometer, which verified the usefulness of the synthetic microfluidic papers for precision sampling.