Clinical evaluation of haploidentical hematopoietic combined with human umbilical cord-derived mesenchymal stem cells in severe aplastic anemia.
Ontology highlight
ABSTRACT: This study not only evaluated the clinical effects of treatment using haploidentical hematopoietic stem cells (haplo-HSCs) combined with human umbilical cord mesenchymal stem cells (UC-MSCs) in patients with severe aplastic anemia (SAA), but also investigated the factors related to graft versus host disease (GVHD).Cotransplantation of haplo-HSCs and UC-MSCs was performed in 24 SAA patients. The conditioning regimens consisted of rabbit anti-human T-lymphocyte immunoglobulin (ATG), cyclophosphamide, and fludarabine with or without busulfan. GVHD was prevented using cyclosporine A, ATG, anti-CD25 monoclonal antibody, and mycophenolate material.The incidence of acute GVHD was 50%. The incidence of severe acute GVHD was not related to gender, age, donor-recipient relations, and patient/donor pair, while patient/donor pair (r = 0.541, P = 0.022) was significantly correlated with incidence of chronic GVHD. Upon follow-up for a median of 13 months, 5 of the 24 patients (20.8%) were dead. The survival rates at 3 and 6 months in all patients were 87.5% (21/24) and 83.3% (20/24), respectively.Cotransplantation of haplo-HSCs combined with UC-MSCs was an effective and safe approach for the treatment of patients with SAA. The appropriate conditioning regimen and early treatment for infection also played a critical role in the success of HSCT.
<h4>Background</h4>This study not only evaluated the clinical effects of treatment using haploidentical hematopoietic stem cells (haplo-HSCs) combined with human umbilical cord mesenchymal stem cells (UC-MSCs) in patients with severe aplastic anemia (SAA), but also investigated the factors related to graft versus host disease (GVHD).<h4>Methods</h4>Cotransplantation of haplo-HSCs and UC-MSCs was performed in 24 SAA patients. The conditioning regimens consisted of rabbit anti-human T-lymphocyte i ...[more]
Project description:BackgroundHaploidentical hematopoietic stem cell transplantation (haplo-HSCT) based on granulocyte colony-stimulating factor plus anti-thymocyte regimens ('Beijing Protocol') provides a salvage treatment for patients of acquired severe aplastic anemia (SAA) in China. However, graft-versus-host disease (GVHD) is a major impediment of haplo-HSCT due to human leukocyte antigen disparity. Recently, haplo-HSCT combined with umbilical cord blood (UCB) (haplo-cord HSCT) is performed in clinical trials to potentially reduce the risk of severe GVHD. Nevertheless, studies comparing GVHD in pediatric patients receiving haplo and haplo-cord HSCT for SAA are limited.ObjectiveThe objective of this study was to investigate the impact of UCB co-infusion on GVHD in pediatric patients receiving haplo-HSCT for SAA.DesignWe conducted a retrospective study of 91 consecutive SAA children undergoing haploidentical transplantation based on the 'Beijing Protocol' with or without co-infusion of UCB in our center.MethodsAll patients received uniform non-myeloablative conditioning and GVHD prophylaxis. We compared baseline characteristics and transplant outcomes between the haplo (n = 35) and haplo-cord (n = 56) recipients.ResultsAll 91 patients achieved hematopoietic recovery from haploidentical donors, with a higher incidence of peri-engraftment syndrome observed with the haplo-cord group as compared with the haplo group (75.0% versus 48.6%, p = 0.029). Notably, the haplo-cord group showed a lower incidence of II-IV acute GVHD (aGVHD) than the haplo group (16.1% versus 42.9%, p = 0.002). Observed incidences of chronic GVHD (cGVHD) and moderate to severe cGVHD in the haplo-cord group were also lower than that in the haplo group (25.6% versus 51.3%, p = 0.019; 16.2% versus 41.3%, p = 0.016, respectively). Haplo-cord HSCT was identified as the only factor associated with a lower incidence of II-IV aGVHD and cGVHD in multivariate analysis. However, no differences were observed between the two groups for infections and survival outcomes.ConclusionOur data indicated that co-infusion of UCB in 'Beijing Protocol'-based haplo-HSCT may be effective for reducing the risk of severe GVHD in SAA children.
Project description:BackgroundMesenchymal stem cells (MSCs) are a class of adult stem cells with self-renewal and multidirectional differentiation potential that may be a treatment for aplastic anemia (AA).MethodUmbilical cord-derived MSCs were cultured in three media (Mesencult-XF, MCL, and StemPro MSC SFM CTS). HGF, PGE2, ANG-1, TGF-β1, IFN-γ, and TNF-α were detected using ELISA. The AA mouse model was built via post-irradiation lymphocyte infusion. After different treatments, routine blood, VEGF, and Tregs were detected every week. On day 28, all mice were killed, and their femurs were stained with HE.ResultsUmbilical cord-derived MSCs cultured in the three media all conformed to the general characteristics of MSCs. HGF secreted by MSCs in the Mesencult-XF, and MCL was greater than that in the StemPro MSC SFM CTS; ANG-1 and TGF-β1 in the MCL were more than that in Mesencult-XF and StemPro MSC SFM CTS; PGE2 in the MCL and StemPro MSC SFM CTS was more than that in the Mesencult-XF. MSCs in the MCL and StemPro MSC SFM CTS inhibited IFN-γ and TNF-α more than those in the Mesencult-XF. The peripheral blood cell in the AA groups was at a low level while that in the MSC group recovered rapidly. The Treg ratio and VEGF level in the MSC group were higher than those in the AA group. The bone marrow (BM) recovered significantly after MSC infusion.ConclusionMSCs in the MCL were advantageous in supporting hematopoiesis and modulating immunity and had the potential for effective treatment of AA.
Project description:BackgroundDefects of bone marrow mesenchymal stem cells (BM-MSCs) in proliferation and differentiation are involved in the pathophysiology of aplastic anemia (AA). Infusion of umbilical cord mesenchymal stem cells (UC-MSCs) may improve the efficacy of immunosuppressive therapy (IST) in childhood severe aplastic anemia (SAA).MethodsWe conducted an investigator-initiated, open-label, and prospective phase IV trial to evaluate the safety and efficacy of combination of allogenic UC-MSCs and standard IST for pediatric patients with newly diagnosed SAA. In mesenchymal stem cells (MSC) group, UC-MSCs were injected intravenously at a dose of 1 × 106/kg per week starting on the 14th day after administration of rabbit antithymocyte globulin (ATG), for a total of 3 weeks. The clinical outcomes and adverse events of patients with UC-MSCs infusion were assessed when compared with a concurrent control group in which patients received standard IST alone.ResultsNine patients with a median age of 4 years were enrolled as the group with MSC, while the data of another 9 childhood SAA were analysed as the controls. Four (44%) patients in MSC group developed anaphylactic reactions which were associated with rabbit ATG. When compared with the controls, neither the improvement of blood cell counts, nor the change of T-lymphocytes after IST reached statistical significance in MSC group (both p > 0.05) and there were one (11%) patient in MSC group and two (22%) patients in the controls achieved partial response (PR) at 90 days after IST. After a median follow-up of 48 months, there was no clone evolution occurring in both groups. The 4-year estimated overall survival (OS) rate in two groups were both 88.9% ± 10.5%, while the 4-year estimated failure-free survival (FFS) rate in MSC group was lower than that in the controls (38.1% ± 17.2% vs. 66.7% ± 15.7%, p = 0.153).ConclusionsConcomitant use of IST and UC-MSCs in SAA children is safe but may not necessarily improve the early response rate and long-term outcomes. This clinical trial was registered at ClinicalTrials.gov, identifier: NCT02218437 (registered October 2013).
Project description:PurposeTo investigate the efficacy and safety of umbilical cord blood (UCB) infusion (UCBI) plus immunosuppressive therapy (IST) treatment in comparison to IST treatment, as well as predictive factors for clinical responses, in severe aplastic anemia (SAA) patients.Materials and methodsTotally, 93 patients with SAA were enrolled in this cohort study. In the IST group, rabbit antithymocyte globulin (r-ATG) combined with cyclosporine A (CsA) was administered, while in the IST+UBCI group, r-ATG, CsA, and UCB were used.ResultsAfter 6 months of treatment, UCBI+IST achieved a higher complete response (CR) rate (p=0.002) and an elevated overall response rate (ORR) (p=0.004), compared to IST. Regarding hematopoietic recovery at month 6, platelet responses in the UCBI+IST group were better than those in the IST group (p=0.002), and UCBI+IST treatment facilitated increasing trends in absolute neutrophil count (ANC) response (p=0.056). Kaplan-Meier curves illuminated UCBI+IST achieved faster ANC response (p<0.001) and platelet response (p<0.001), compared with IST therapy. There was no difference in overall survival (OS) between the two groups (p=0.620). Furthermore, logistic regression analysis demonstrated that UCBI+IST was an independent predicting factor for both CR (p=0.001) and ORR (p<0.001), compared to IST; meanwhile, very severe aplastic anemia (VSAA) and ANC could predict clinical responses as well. However, Cox proportional hazard regression indicated that VSAA (p=0.003), but not UCBI+IST, affected OS. Safety profiles showed that UCBI+IST therapy did not elevate adverse events, compared with IST treatment.ConclusionUCBI+IST achieved better clinical responses and hematopoietic recovery than IST, and was well tolerated in SAA patients.
Project description:Hematopoietic stem cell transplantation (bone marrow transplantation [BMT]) is the only curative treatment of severe aplastic anemia. BMT from an human leukocyte antigen (HLA)-matched sibling donor is the standard of care for young patients; immunosuppressive therapy is used for older patients or those lacking matched sibling donors. Patients with refractory or relapsed disease are increasingly treated with HLA haploidentical BMT. Historically, haploidentical BMT led to high rates of graft rejection and graft-versus-host disease. High-dose post transplant cyclophosphamide, which mitigates the risk of graft-versus-host disease, is a major advance. This article provides an overview of the haploidentical BMT approach in severe aplastic anemia.
Project description:The purpose of this study in severe aplastic anemia (SAA) patients was to compare the feasibility and efficacy of haploidentical hematological stem cell transplantation combined with a single unrelated cord blood (UCB) infusion (Haplo-cord-HSCT) or haplo-identical HSCT (Haplo-HSCT) alone. The five-year graft-versus-host disease (GVHD)-free or failure-free survival (GFFS) was similar between the two groups (72.4 ± 3.4% vs. 65.4 ± 5.2%, P = 0.178); however, the five-year overall survival (OS) was more favorable in the Haplo-cord-HSCT group than that in the Haplo-HSCT group (84.0 ± 2.8% vs. 72.6 ± 4.9%, P = 0.022), as was transplantation-related mortality (16.4% vs. 27.4%, P = 0.039). Multivariate analysis showed that Haplo-cord HSCT was the only independent determinant of increased OS (P = 0.013). Explorative subgroup analysis showed that only an Human leukocyte antigen-A (HLA-A) allele match between UCB and the recipient was a beneficial factor for GFFS in the Haplo-cord-HSCT group (P = 0.011). In the haplo-cord with an HLA-A match (n = 139) or mismatch (n = 32) or Haplo-HSCT groups, a haplo-cord HLA-A allele match was associated with lower I–IV and III–IV acute GVHD. The haplo-cord with an HLA-A match subgroup also had higher five-year OS than the Haplo-HSCT group (85.4 ± 3.0% vs. 72.6 ± 4.9%, P = 0.013), and higher five-year GFFS than the Haplo-cord HLA-A allele mismatch subgroup (76.2 ± 3.6% vs. 56.3 ± 8.8%, P = 0.011). These findings suggest that the coinfusion of a single UCB potentially improves survival of Haplo-HSCT in SAA patients and that an HLA-A allele-matched UCB is the preferred option.
Project description:Umbilical cord blood (UCB) transplantation is a potentially curative treatment for patients with refractory severe aplastic anaemia (SAA), but has historically been associated with delayed engraftment and high graft failure and mortality rates. We conducted a prospective phase 2 trial to assess outcome of an allogeneic transplant regimen that co-infused a single UCB unit with CD34+ -selected cells from a haploidentical relative. Among 29 SAA patients [including 10 evolved to myelodysplastic syndrome (MDS)] who underwent the haplo cord transplantation (median age 20 years), 97% had neutrophil recovery (median 10 days), and 93% had platelet recovery (median 32 days). Early myeloid engraftment was from the haplo donor and was gradually replaced by durable engraftment from UCB in most patients. The cumulative incidences of grade II-IV acute and chronic graft-versus-host disease (GVHD) were 21% and 41%, respectively. With a median follow-up of 7·5 years, overall survival was 83% and GVHD/relapse-free survival was 69%. Patient- and transplant-related factors had no impact on engraftment and survival although transplants with haplo-versus-cord killer-cell immunoglobulin-like receptor (KIR) ligand incompatibility had delayed cord engraftment. Our study shows haplo cord transplantation is associated with excellent engraftment and long-term outcome, providing an alternative option for patients with refractory SAA and hypoplastic MDS who lack human leucocyte antigen (HLA)-matched donors.
Project description:Severe aplastic anemia (SAA) is a stem cell disorder often treated with bone marrow transplantation (BMT) to reconstitute hematopoiesis. Outcomes of related HLA-haploidentical (haplo) donors after reduced-intensity conditioning with intensive graft-versus-host disease (GVHD) prophylaxis including posttransplantation cyclophosphamide are presented here from 37 SAA, 20 relapsed/refractory (R/R), and 17 treatment-naïve (TN) SAA patients. Median follow-up is 32 months (90% confidence interval [CI], 29-44). The median age was 25 (range, 4-69) years. The median time to neutrophil recovery was 17 days (range, 15-88). Four of 37 patients (11%) experienced graft failure (GF). There was 1 primary GF of 20 patients in the R/R group and 3 of 17 in the TN group at 200 cGy (1 primary, 2 secondary), but none in the 10 patients who received 400 cGy total body irradiation. Two patients with GF succumbed to infection and 2 were rescued with second haplo BMT. The overall survival for all patients is 94% (90% CI, 88-100) at 1 and 2 years. The cumulative incidence of grade II-IV acute GVHD at day 100 is 11%. The cumulative index of chronic GVHD at 2 years is 8%. Similar results were seen in 10 SAA patients who received the identical nonmyeloablative regimen with posttransplant cyclophosphamide but matched donor transplants. Haplo BMT with posttransplant cyclophosphamide represents a potential cure in SAA, with all 20 R/R currently alive, disease-free, and with no evidence of active GVHD. Extending this approach to TN patients was associated with higher GF rates, but an increase in total body irradiation dose to 400 cGy was associated with durable engraftment without greater early toxicity. Nonmyeloablative haplo BMT in TN SAA could lead to a paradigm shift, such that essentially all patients can proceed quickly to safe, curative BMT. These trials were registered at www.cincialtrials.gov as #NCT02224872) and #NCT02833805.
Project description:In acquired immune aplastic anemia (AA), pathogenic cytotoxic Th1 cells are activated and expanded, driving an immune response against the hematopoietic stem and progenitor cells (HSPCs) that provokes cell depletion and causes bone marrow failure. However, additional HSPC defects may contribute to hematopoietic failure, reflecting on disease outcomes and response to immunosuppression. Here we derived induced pluripotent stem cells (iPSCs) from peripheral blood (PB) erythroblasts obtained from patients diagnosed with immune AA using non-integrating plasmids to model the disease. Erythroblasts were harvested after hematologic response to immunosuppression was achieved. Patients were screened for germline pathogenic variants in bone marrow failure-related genes and no variant was identified. Reprogramming was equally successful for erythroblasts collected from the three immune AA patients and the three healthy subjects. However, the hematopoietic differentiation potential of AA-iPSCs was significantly reduced both quantitatively and qualitatively as compared to healthy-iPSCs, reliably recapitulating disease: differentiation appeared to be more severely affected in cells from the two patients with partial response as compared to the one patient with complete response. Telomere elongation and the telomerase machinery were preserved during reprogramming and differentiation in all AA-iPSCs. Our results indicate that iPSCs are a reliable platform to model immune AA and recapitulate clinical phenotypes. We propose that the immune attack may cause specific epigenetic changes in the HSPCs that limit adequate proliferation and differentiation.
Project description:Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative therapy for a variety of hematologic diseases. However, this therapeutic platform is limited by an initial period when patients are profoundly immunocompromised. There is gradual immune recovery over time, that varies by transplant platform. Here, we review immune reconstitution after allogeneic HCT with a specific focus on two alternative donor platforms that have dramatically improved access to allogeneic HCT for patients who lack an HLA-matched related or unrelated donor: haploidentical and umbilical cord blood HCT. Despite challenges, interventions are available to mitigate the risks during the immunocompromised period including antimicrobial prophylaxis, modified immune suppression strategies, graft manipulation, and emerging adoptive cell therapies. Such interventions can improve the potential for long-term overall survival after allogeneic HCT.