Unknown

Dataset Information

0

Improving genetic prediction by leveraging genetic correlations among human diseases and traits.


ABSTRACT: Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7% for height to 47% for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait.

SUBMITTER: Maier RM 

PROVIDER: S-EPMC5841449 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improving genetic prediction by leveraging genetic correlations among human diseases and traits.

Maier Robert M RM   Zhu Zhihong Z   Lee Sang Hong SH   Trzaskowski Maciej M   Ruderfer Douglas M DM   Stahl Eli A EA   Ripke Stephan S   Wray Naomi R NR   Yang Jian J   Visscher Peter M PM   Robinson Matthew R MR  

Nature communications 20180307 1


Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits.  ...[more]

Similar Datasets

| S-EPMC4797329 | biostudies-literature
| S-EPMC3988249 | biostudies-literature
| S-EPMC5481142 | biostudies-literature
| S-EPMC7651975 | biostudies-literature
| S-EPMC8081576 | biostudies-literature
| S-EPMC6030458 | biostudies-literature
| S-EPMC8059341 | biostudies-literature
| S-EPMC9526325 | biostudies-literature
| S-EPMC11288879 | biostudies-literature
| S-EPMC10424803 | biostudies-literature