The 4-N-acyl and 4-N-alkyl gemcitabine analogues with silicon-fluoride-acceptor: Application to 18F-Radiolabeling.
Ontology highlight
ABSTRACT: The coupling of gemcitabine with functionalized carboxylic acids using peptide coupling conditions afforded 4-N-alkanoyl analogues with a terminal alkyne or azido moiety. Reaction of 4-N-tosylgemcitabine with azidoalkyl amine provided 4-N-alkyl gemcitabine with a terminal azido group. Click reaction with silane building blocks afforded 4-N-alkanoyl or 4-N-alkyl gemcitabine analogues suitable for fluorination. RP-HPLC analysis indicated better chemical stability of 4-N-alkyl gemcitabine analogues versus 4-N-alkanoyl analogues in acidic aqueous conditions. The 4-N-alkanoyl gemcitabine analogues showed potent cytostatic activity against L1210?cell line, but cytotoxicity of the 4-N-alkylgemcitabine analogues was low. However, 4-N-alkanoyl and 4-N-alkyl analogues had comparable antiproliferative activities in the HEK293?cells. The 4-N-alkyl analogue with a terminal azide group was shown to be localized inside HEK293?cells by fluorescence microscopy after labelling with Fluor 488-alkyne. The [18F]4-N-alkyl or alkanoyl silane gemcitabine analogues were successfully synthesized using microscale and conventional silane-labeling radiochemical protocols. Preliminary positron-emission tomography (PET) imaging in mice showed the biodistribution of [18F]4-N-alkyl to have initial concentration in the liver, kidneys and GI tract followed by increasing signal in the bone.
SUBMITTER: Gonzalez C
PROVIDER: S-EPMC5841594 | biostudies-literature | 2018 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA