A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis.
Ontology highlight
ABSTRACT: Noninvasive biomarkers are urgently needed for patients with nonalcoholic steatohepatitis (NASH) to assist in diagnosis, monitoring disease progression and assessing treatment response. Recently several exploratory studies showed that circulating level of microRNA is associated with NASH and correlated with disease severity. Although these data were encouraging, the application of circulating microRNA as biomarkers for patient screening and stratification need to be further assessed under well-controlled conditions.The expression of circulating microRNAs were profiled in diet-induced NASH progression and regression models to assess the diagnostic and prognostic values and the translatability between preclinical mouse model and men. Since these mice had same genetic background and were housed in the same conditions, there were minimal confounding factors. Histopathological lesions were analyzed at distinct disease progression stages along with microRNA measurement which allows longitudinal assessment of microRNA as NASH biomarkers. Next, differentially expressed microRNAs were identified and validated in an independent cohorts of animals. Thirdly, these microRNAs were examined in a NASH regression model to assess whether they would respond to NASH treatment. MicroRNA profiling in two independent cohorts of animals validated the up-regulation of 6 microRNAs (miR-122, miR-192, miR-21, miR-29a, miR-34a and miR-505) in NASH mice, which was designated as the circulating microRNA signature for NASH. The microRNA signature could accurately distinguish NASH mice from lean mice, and it responded to chow diet treatment in a NASH regression model. To further improve the performance of microRNA-based biomarker, a new composite biomarker was proposed, which consists of miR-192, miR-21, miR-505 and ALT. The new composite biomarker outperformed the microRNA signature in predicting NASH mice which had NAS?>?3, and deserves further validations in large scale studies.The present study supported the translation of circulating microRNAs between preclinical models and humans in NASH pathogenesis and progression. The microRNA-based composite biomarker may be used for non-invasive diagnosis, clinical monitoring and assessing treatment response for NASH.
<h4>Background</h4>Noninvasive biomarkers are urgently needed for patients with nonalcoholic steatohepatitis (NASH) to assist in diagnosis, monitoring disease progression and assessing treatment response. Recently several exploratory studies showed that circulating level of microRNA is associated with NASH and correlated with disease severity. Although these data were encouraging, the application of circulating microRNA as biomarkers for patient screening and stratification need to be further as ...[more]
Project description:IntroductionIn the setting of the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become one of the most prevalent forms of chronic liver disease worldwide. Approximately 25% of adults globally have NAFLD which includes those with NAFL, or simple steatosis, and individuals with nonalcoholic steatohepatitis (NASH) where inflammation, hepatocyte injury and potentially hepatic fibrosis are found in conjunction with steatosis. Individuals with NASH, particularly those with hepatic fibrosis, have higher rates of liver-related and overall mortality, making this distinction of significant clinical importance. One of the core challenges in current clinical practice is identifying this subset of individuals with NASH without the use of liver biopsy, the gold standard for both diagnostics and staging disease severity. Identifying noninvasive biomarkers, an accurately measured and reproducible parameter, would aide in identifying patients eligible for NASH pharmacotherapy clinical trials and to help tailor intensity of monitoring required.Methods results and conclusionsIn this review, we highlight both the currently available and novel diagnostic and interventional circulating biomarkers under investigation for NASH, underscoring their accuracy and limitations relevant to our patient population and current clinical practice.
Project description:BackgroundEicosanoid and related docosanoid polyunsaturated fatty acids (PUFAs) and their oxygenated derivatives have been proposed as noninvasive lipidomic biomarkers of nonalcoholic steatohepatitis (NASH). Therefore, we investigated associations between plasma eicosanoids and liver fibrosis to evaluate their utility in diagnosing and monitoring NASH-related fibrosis.MethodsOur analysis used baseline eicosanoid data from 427 patients with biopsy-confirmed nonalcoholic fatty liver disease (NAFLD), and longitudinal measurements along with liver fibrosis staging from 63 patients with NASH and stage 2/3 fibrosis followed for 24 weeks in a phase II trial.ResultsAt baseline, four eicosanoids were significantly associated with liver fibrosis stage: 11,12-DIHETE, tetranor 12-HETE, adrenic acid, and 14, 15-DIHETE. Over 24 weeks of follow up, a combination of changes in seven eicosanoids [5-HETE, 7,17-DHDPA, adrenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), 16-HDOHE, and 9-HODE) had good diagnostic accuracy for the prediction of ⩾1 stage improvement in fibrosis (AUROC: 0.74; 95% CI: 0.62-0.87), and a combination of four eicosanoids (7,17-DHDPA, 14,15-DIHETRE, 9-HOTRE, and free adrenic acid) accurately predicted improvement in hepatic collagen content (AUROC: 0.72; 95% CI: 0.50-0.77).ConclusionThis study provides preliminary evidence that plasma eicosanoids may serve as noninvasive biomarkers of liver fibrosis and may predict liver fibrosis improvement in NASH.
Project description:MicroRNAs (miRNAs) act as post-transcriptional regulators of gene expression. In sarcoidosis, aberrant miRNA expression may enhance immune responses mounted against an unknown antigenic agent. We tested whether a distinct miRNA signature functions as a diagnostic biomarker and explored its role as an immune modulator in sarcoidosis. The expression of miRNAs in peripheral blood mononuclear cells from subjects who met clinical and histopathologic criteria for sarcoidosis was compared with that observed in matched controls in the ACCESS (A Case Controlled Etiologic Study of Sarcoidosis) study. Signature miRNAs were determined by miRNA microarray analysis and validated by quantitative RT-PCR. Microarray analysis identified 54 mature, human feature miRNAs that were differentially expressed between the groups. Significant feature miRNAs that distinguished subjects with sarcoidosis from controls were selected by means of probabilistic models adjusted for clinical variables. Eight signature miRNAs were chosen to verify the diagnosis of sarcoidosis in a validation cohort, and distinguished subjects with sarcoidosis from controls with a positive predictive value of 88%. We identified both novel and previously described genes and molecular pathways associated with sarcoidosis as targets of these signature miRNAs. Additionally, we demonstrate that signature miRNAs (hsa-miR-150-3p and hsa-miR-342-5p) are significantly associated with reduced lymphocytes and airflow limitations, both of which are known markers of a poor prognosis. Together, these findings suggest that a circulating miRNA signature serves as a noninvasive biomarker that supports the diagnosis of sarcoidosis. Future studies will test the miRNA signature as a prognostication tool to identify unfavorable changes associated with poor clinical outcomes in sarcoidosis.
Project description:Nonalcoholic steatohepatitis (NASH) is considered as a progressive form of nonalcoholic fatty liver disease (NAFLD). To distinguish NASH from nonalcoholic fatty liver (NAFL), we evaluated the diagnostic value of circulating miRNAs. Small RNA sequencing was performed on 12 NAFL patients and 12 NASH patients, and the miRNA expression was compared. After selecting miRNAs for the diagnosis of NASH, we analyzed the diagnostic accuracy of each miRNA and the combination of miRNAs. External validation was performed using quantitative reverse transcription PCR. Among the 2,588 miRNAs, 26 miRNAs significantly increased in the NASH group than in the NAFL group. Among the 26 elevated miRNAs in the NASH group, 8 miRNAs were selected, and in silico analysis was performed. Only four miRNAs (miR-21-5p, miR-151a-3p, miR-192-5p, and miR-4449) showed significant area under the receiver operating characteristic curve (AUC) values for NASH diagnosis. The combination of the four miRNAs showed satisfactory diagnostic accuracy for NASH (AUC 0.875; 95% CI 0.676-0.973). External validation revealed similar diagnostic accuracy for NASH (AUC 0.874; 95% CI 0.724-0.960). NASH represents significantly distinct miRNA expression profile compared with NAFL. The combination of serum circulating miRNAs can be used as a novel biomarker for the NASH diagnosis in NAFLD.
Project description:There are no approved diagnostic biomarkers for at-risk non-alcoholic steatohepatitis (NASH), defined by the presence of NASH, high histological activity and fibrosis stage ≥2, which is associated with higher incidence of liver-related events and mortality. FNIH-NIMBLE is a multi-stakeholder project to support regulatory approval of NASH-related biomarkers. The diagnostic performance of five blood-based panels was evaluated in an observational (NASH CRN DB2) cohort (n = 1,073) with full spectrum of non-alcoholic fatty liver disease (NAFLD). The panels were intended to diagnose at-risk NASH (NIS4), presence of NASH (OWLiver) or fibrosis stages >2, >3 or 4 (enhanced liver fibrosis (ELF) test, PROC3 and FibroMeter VCTE). The prespecified performance metric was an area under the receiver operating characteristic curve (AUROC) ≥0.7 and superiority over alanine aminotransferase for disease activity and the FIB-4 test for fibrosis severity. Multiple biomarkers met these metrics. NIS4 had an AUROC of 0.81 (95% confidence interval: 0.78-0.84) for at-risk NASH. The AUROCs of the ELF test, PROC3 and FibroMeterVCTE for clinically significant fibrosis (≥stage 2), advanced fibrosis (≥stage 3) or cirrhosis (stage 4), respectively, were all ≥0.8. ELF and FibroMeter VCTE outperformed FIB-4 for all fibrosis endpoints. These data represent a milestone toward qualification of several biomarker panels for at-risk NASH and also fibrosis severity in individuals with NAFLD.
Project description:UnlabelledSpecific alterations in hepatic lipid composition characterize the spectrum of nonalcoholic fatty liver disease (NAFLD), which extends from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH). However, the plasma lipidome of NAFLD and whether NASH has a distinct plasma lipidomic signature are unknown. A comprehensive analysis of plasma lipids and eicosanoid metabolites quantified by mass spectrometry was performed in NAFL (n = 25) and NASH (n = 50) subjects and compared with lean normal controls (n = 50). The key findings include significantly increased total plasma monounsaturated fatty acids driven by palmitoleic (16:1 n7) and oleic (18:1 n9) acids content (P < 0.01 for both acids in both NAFL and NASH). The levels of palmitoleic acid, oleic acid, and palmitoleic acid to palmitic acid (16:0) ratio were significantly increased in NAFLD across multiple lipid classes. Linoleic acid (8:2n6) was decreased (P < 0.05), with a concomitant increase in gamma-linolenic (18:3n6) and dihomo gamma-linolenic (20:3n6) acids in both NAFL and NASH (P < 0.001 for most lipid classes). The docosahexanoic acid (22:6 n3) to docosapentenoic acid (22:5n3) ratio was significantly decreased within phosphatidylcholine (PC), and phosphatidylethanolamine (PE) pools, which was most marked in NASH subjects (P < 0.01 for PC and P < 0.001 for PE). The total plasmalogen levels were significantly decreased in NASH compared with controls (P < 0.05). A stepwise increase in lipoxygenase (LOX) metabolites 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 8-HETE, and 15-HETE characterized progression from normal to NAFL to NASH. The level of 11-HETE, a nonenzymatic oxidation product of arachidonic (20:4) acid, was significantly increased in NASH only.ConclusionsAlthough increased lipogenesis, desaturases, and LOX activities characterize NAFL and NASH, impaired peroxisomal polyunsaturated fatty acid (PUFA) metabolism and nonenzymatic oxidation is associated with progression to NASH.
Project description:Next Generation Sequencing (NGS) was carried out on subjects who visited an oriental medicine clinic due to recurrent sleep disturbance, and 40 individuals (17 male and 23 female) were set as the sleep diorder (SD) group based on their scores on the sleep distrurbance questionnaire of Pittsburgh sleep quality index (PSQI). The control group consisted of 40 healthy individuals (20 males and females each), as assessed by both subjective diagnosis and test for metabolic syndrome factors.Ten individuals (five males and females each) from the SD and the control group, respectively, were allocated for NGS analysis.
Project description:Hepatocellular carcinoma (HCC) is the fastest-rising cause of cancer-related death in the United States. Recent epidemiological studies have identified nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease (NAFLD), as a major risk factor for HCC. Elucidating the underlying mechanisms associated with the development of NASH-derived HCC is critical for identifying early biomarkers for the progression of the disease and for treatment and prevention. In the present study, using liver samples from C57BL/6J mice submitted to the Stelic Animal Model (STAM) of NASH-associated liver carcinogenesis, we investigated the role of microRNA (miRNA) alterations in the pathogenesis of NASH-derived HCC. We found substantial alterations in the expression of miRNAs, with the greatest number occurring in full-fledged HCC. Mechanistically, altered miRNA expression was associated with activation of major hepatocarcinogenesis-related pathways, including the TGF-β, Wnt/β-catenin, ERK1/2, mTOR, and EGF signaling. In addition, the over-expression of the miR-221-3p and miR-222-3p and oncogenic miR-106b∼25 cluster was accompanied by the reduced protein levels of their targets, including E2F transcription factor 1 (E2F1), phosphatase and tensin homolog (PTEN), and cyclin-dependent kinase inhibitor 1 (CDKN1A). Importantly, miR-93-5p, miR-221-3p, and miR-222-3p were also significantly over-expressed in human HCC. These findings suggest that aberrant expression of miRNAs may have mechanistic significance in NASH-associated liver carcinogenesis and may serve as an indicator for the development of NASH-derived HCC.
Project description:PurposeRenal cell carcinoma (RCC) is the most common type of kidney cancer in adults. Exosomes are membrane-enclosed extracellular vesicles, and exosomal RNA can be a biomarker for cancer diagnosis and prognosis in RCC patients. We aim to identify differences in miRNA expression profiles in peripheral blood exosomes between RCC patients and healthy subjects as well as to investigate novel markers of RCC.MethodsWe performed exosomal miRNA sequencing of plasma samples obtained from five RCC patients and five control subjects, subsequently 22 RCC patients and 16 control subjects were investigated using qPCR to confirm the differential miRNA which from plasma exosomal RNA sequencing. ROC curves were constructed to assess the diagnostic accuracy of exosomal miRNAs as diagnostic biomarkers of RCC.ResultsExosomes were isolated with the exoeasy maxi kit and confirmed using TEM and NTA. They have a spherical structure with a diameter of approximately 40-180 nm. The exosomal miRNA sequence results showed that a total of 2357 miRNAs were detected, and 245 miRNAs were differentially expressed between RCC patients and healthy controls (p<0.001, average counts >5, log|fc|>1). Further analysis revealing that, versus the control, 17 miRNAs are up-regulated and 5 miRNAs are down-regulated under selection conditions with average miRNAs counts >100. qPCR was performed using 38 subjects-the results showed that the expression levels of hsa-mir-149-3p and hsa-mir-424-3p were upregulated; the expression levels of hsa-mir-92a-1-5p were significantly downregulated in the plasma exosomes of RCC. For diagnosis of RCC, the AUC of hsa-mir-92a-1-5p, hsa-mir-149-3p and hsa-mir-424-3p was 0.8324, 0.7188 and 0.7727, with the sensitivity of 0.875, 0.750 and 0.750, and the specificity of 0.773,0.727 and 0.818, respectively, at the best cutoff value.ConclusionOur study revealed that the expression levels of hsa-mir-92a-1-5p, hsa-mir-149-3p and hsa-mir-424-3p were significantly abnormal in RCC patients, which may be novel biomarkers for RCC diagnosis.
Project description:The challenge in managing thyroid nodules is to accurately diagnose the minority of those with malignancy. We aimed to identify diagnostic and prognostic miRNA markers for thyroid nodules. In a discovery cohort, we identified 20 candidate miRNAs to differentiate between noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) and papillary thyroid carcinomas (PTC) by using the high-throughput small RNA sequencing method. We then selected three miRNAs (miR-136, miR-21, and miR-127) that were differentially expressed between the PTC follicular variant and other variants in The Cancer Genome Atlas data. High expression of three miRNAs differentiated thyroid cancer from nonmalignant tumors, with an area under curve (AUC) of 0.76-0.81 in an independent cohort. In patients with differentiated thyroid cancer, the high-level expression of the three miRNAs was an independent indicator for both distant metastases and recurrent or persistent disease. In patients with PTC, a high expression of miRNAs was associated with an aggressive histologic variant, extrathyroidal extension, distant metastasis, or recurrent or persistent disease. Three miRNAs may be used as diagnostic markers for differentiating thyroid cancers from benign tumors and tumors with extremely low malignant potential (NIFTP), as well as prognostic markers for predicting the risk of recurrent/persistent disease for differentiated thyroid cancer.