Unknown

Dataset Information

0

Selective inhibition of cancer cells by enzyme-induced gain of function of phosphorylated melittin analogues.


ABSTRACT: The selective killing of cancer cells and the avoidance of drug resistance are still difficult challenges in cancer therapy. Here, we report a new strategy that uses enzyme-induced gain of function (EIGF) to regulate the structure and function of phosphorylated melittin analogues (MelAs). Original MelAs have the capacity to disrupt plasma membranes and induce cell death without selectivity. However, phosphorylation of Thr23 on one of the MelAs (MelA2-P) efficiently ameliorated the membrane lysis potency as well as the cytotoxicity for normal mammalian cells. After treatment with alkaline phosphatase (ALP), which is more active in cancer cells than normal cells, MelA2-P restored the pore-forming function around the cancer cells and induced cancer cell death selectively. This mechanism was independent of the receptor proteins and the cell uptake process, which may partially bypass the development of drug resistance in cancer cells.

SUBMITTER: Li QQ 

PROVIDER: S-EPMC5849211 | biostudies-literature | 2017 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective inhibition of cancer cells by enzyme-induced gain of function of phosphorylated melittin analogues.

Li Qian-Qian QQ   Chen Pu-Guang PG   Hu Zhi-Wen ZW   Cao Yuan Y   Chen Liang-Xiao LX   Chen Yong-Xiang YX   Zhao Yu-Fen YF   Li Yan-Mei YM  

Chemical science 20170912 11


The selective killing of cancer cells and the avoidance of drug resistance are still difficult challenges in cancer therapy. Here, we report a new strategy that uses enzyme-induced gain of function (EIGF) to regulate the structure and function of phosphorylated melittin analogues (MelAs). Original MelAs have the capacity to disrupt plasma membranes and induce cell death without selectivity. However, phosphorylation of Thr23 on one of the MelAs (MelA2-P) efficiently ameliorated the membrane lysis  ...[more]

Similar Datasets

| S-EPMC3443472 | biostudies-literature
| S-EPMC4035943 | biostudies-literature
| S-EPMC3988914 | biostudies-literature
| S-EPMC4014597 | biostudies-literature
| S-EPMC5466822 | biostudies-literature
| S-EPMC5116311 | biostudies-literature
| S-EPMC5813235 | biostudies-literature
| S-EPMC9476189 | biostudies-literature
| S-EPMC1217380 | biostudies-other
| S-EPMC3298459 | biostudies-literature