Unknown

Dataset Information

0

Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.


ABSTRACT: Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states.

SUBMITTER: Pollock SB 

PROVIDER: S-EPMC5856557 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

Pollock Samuel B SB   Hu Amy A   Mou Yun Y   Martinko Alexander J AJ   Julien Olivier O   Hornsby Michael M   Ploder Lynda L   Adams Jarrett J JJ   Geng Huimin H   Müschen Markus M   Sidhu Sachdev S SS   Moffat Jason J   Wells James A JA  

Proceedings of the National Academy of Sciences of the United States of America 20180223 11


Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNG  ...[more]

Similar Datasets

2018-02-12 | GSE102712 | GEO
| S-EPMC6145231 | biostudies-literature
| S-EPMC11347153 | biostudies-literature
| S-EPMC5986246 | biostudies-literature
| S-EPMC3030995 | biostudies-literature
| S-EPMC5380918 | biostudies-literature
| S-EPMC5788347 | biostudies-literature
2018-01-31 | GSE102734 | GEO
| S-EPMC8766897 | biostudies-literature
| S-EPMC9913741 | biostudies-literature